

# TTZP ALL-IN-ONE STANDARD OPERATING PROCEDURES

**VERSION 11.9.23** 

This document has been distributed for Virtual Air Traffic Simulation purposes only.

# INTRODUCTION

This order provides direction and guidance for the day-to-day operations of all TMAs within the Piarco FIR & Piarco Area Control Centre (ACC). Air Traffic Control procedures and limited phraseology assistance is prescribed in this document. TTZP home and visiting controllers are required to be familiar with the provisions contained in this order. The Piarco FIR, VATCAR, VATNA, or VATSIM do **NOT** take any responsibility for use of this order outside of the simulated environment.

# FIR MANAGEMENT

# AIR TRAFFIC MANAGER – BRADLEY FENTY – atm@piarco.vatcar.net DEPUTY AIR TRAFFIC MANAGER – KYLE JOHN – datm@piarco.vatcar.net TRAINING ADMINISTRATOR – SAMMY JOSHUA – ta@piarco.vatcar.net

Compiled by Piarco FIR Training Administrator - Sammy J.

# **RECORD OF CHANGE**

11.09.2023 – Added table of content page – Sammy J

# **TABLE OF CONTENT**

# Piarco TMA Standard Operating Procedures – Page 6

Table of Content – Pg. 7 Chapter 1: General Information – Pg. 8 – 9 Chapter 2: Clearance Delivery – Pg. 10 – 11 Chapter 3: Ground Control – Pg. 12 – 15 Chapter 4: Aerodrome Control – Pg. 16 – 17 Chapter 5: Piarco Approach – Pg. 18 – 19

# Adams TMA Standard Operating Procedures – Page 20

Table of Content – Pg. 21 Chapter 1: General Information – Pg. 22 Chapter 2: Clearance Delivery – Pg. 23 – 24 Chapter 3: Ground Control – Pg. 25 – 26 Chapter 4: Aerodrome Control – Pg. 27 – 29 Chapter 5: Adams Approach – Pg. 30 - 31

# Martinique TMA Standard Operating Procedures – Page 32

Table of Content – Pg. 33 Chapter 1: General Information – Pg. 34 – 35 Chapter 2: Clearance Delivery – Pg. 36 – 39 Chapter 3: Ground Control – Pg. 40 – 42 Chapter 4: Aerodrome Control – Pg. 43 – 45 Chapter 5: Martinique Approach – Pg. 46 – 56

# Point-a-Pitre/ Le Raizet TMA Standard Operating Procedures – Page 57

Table of Content – Pg. 58 Chapter 1: General Information – Pg. 59 – 60 Chapter 2: Clearance Delivery – Pg. 61 – 64 Chapter 3: Ground Control – Pg. 65 – 68 Chapter 4: Aerodrome Control – Pg. 69 – 70 Chapter 5: Raizet Approach – Pg. 71 – 81

# **TABLE OF CONTENT PART. 2**

Minor TMA (Procedural) Standard Operating Procedures – Page 82

Table of Content – Pg. 83 Chapter 1: V.C Bird TMA – Pg. 84 – 89 Chapter 2: Bradshaw CTR – Pg. 90 – 95 Chapter 3: Argyle TMA – Pg. 96 – 102 Chapter 4: Maurice Bishop – Pg. 103 – 105

**Piarco Centre Standard Operating Procedures – Page 106** 

Table of Content – Pg. 107 Chapter 1: General Information – Pg. 108 Chapter 2: Control Area – Pg. 109 - 113 Chapter 3: Separation of Aircraft – Pg. 114 Chapter 4: Oceanic Procedures – Pg. 115 – 118 Chapter 5: Coordination – Pg. 119 – 120



# PIARCO TMA STANDARD OPERATING PROCEDURES

This document has been distributed for Virtual Air Traffic Simulation purposes only.

# **TABLE OF CONTENT**

### **CHAPTER 1: GENERAL INFORMATION**

1-1 AERODROME SPECIFICATIONS1-2 OPERATIONAL POSITIONS1-3 BEACON CODES

### **CHAPTER 2: CLEARANCE DELIVERY**

2-1 OVERVIEW 2-2 VFR DEPARTURES 2-3 IFR DEPARTURES

### **CHAPTER 3: GROUND CONTROL**

3-1 OVERVIEW3-3 GROUND MOVEMENT

#### **CHAPTER 4: AERODROME CONTROL**

4-1 OVERVIEW
4-2 VFR TRAFFIC
4-3 DEPARTURE PROCEDURES
4-4 UNPUBLISHED PROCEDURES
4-5 RUNWAY SELECTION
4-6 NOISE ABATEMENT

#### **CHAPTER 5: PIARCO APPROACH**

5-1 OVERVIEW 5-2 SEPARATION MINIMA 5-3 AIRSPACE DIMENSIONS 5-4 DEPARTURES 5-5 ARRIVALS

## **CHAPTER 1: GENERAL INFORMATION**

1-1 AERODROME SPECIFICATIONS – PIARCO (TTPP)

| AIRSPACE            | CLASS D            |  |
|---------------------|--------------------|--|
| ELEVATION           | 58 FT              |  |
| LATERAL DIMENSION   | 5 NM               |  |
| VERTICAL DIMENSION  | SFC – 2000 FT AMSL |  |
| PATTERN ALTITUDE    | 1000 FT AGL        |  |
| TRANSITION ALTITUDE | 4100FT             |  |
| STANDARD FLOW       | EAST               |  |

# ROBINSON (TTCP)

| AIRSPACE (ATZ)      | CLASS D            |
|---------------------|--------------------|
| ELEVATION           | 38 FT              |
| LATERAL DIMENSION   | 5 NM               |
| VERTICAL DIMENSION  | SFC – 2000 FT AMSL |
| PATTERN ALTITUDE    | 1000 FT AGL        |
| TRANSITION ALTITUDE | 4100 FT            |
| STANDARD FLOW       | EAST               |

## **1-2 OPERATIONAL POSITIONS**

| POSITION   | IDENTIFIER      | FREQUENCY |
|------------|-----------------|-----------|
| TTPP_R_GND | PIARCO APRON    | 121.750   |
| TTPP_GND   | PIARCO GROUND   | 121.900   |
| TTCP_GND   | ROBINSON GROUND | 121.700   |
| TTPP_TWR   | PIARCO TOWER    | 118.100   |
| TTCP_TWR   | ROBINSON TOWER  | 118.400   |
| TTPP_APP   | PIARCO APPROACH | 119.000   |
| TTZP_CTR   | PIARCO RADAR    | 123.700   |
| TTPP_ATIS  | ATIS            | 126.700   |
| TTCP_ATIS  | ATIS            | 132.200   |

## **1-3 BEACON CODES**

| AERODROME         | ТТРР        | ТТСР        |
|-------------------|-------------|-------------|
| DOMESTIC FLIGHTS  | 4201 – 4277 | 4401 – 4477 |
| INT'L FLIGHTS     | 7201 – 7277 | -           |
| LOCAL/VFR FLIGHTS | 5001 – 5077 | 0401 - 0477 |

## **CHAPTER 2: CLEARANCE DELIVERY**

## **2-1 OVERVIEW**

This chapter covers common pressures used within the Piarco TMA for Clearance Delivery procedures. In the Eastern Caribbean, ATC Clearances are given differently than in the USA and other countries. For flights in the Piarco FIR airspace requesting cruising levels above FL240, we need to coordinate with the Area Control Center (ACC) for startup clearance and requested flight level.

All clearance delivery procedures are handled by the Ground Controller. At Piarco & Robinson, ATC clearances are issued at the gate on request which is known as a Pre-Departure clearance. Due to the nature of the VATSIM network, errors in the flight plans are common, so controllers should verify that flight plans are without discrepancies and ensure the pilot has the current weather/ATIS information.

## **2-2 VFR DEPARTURES**

All VFR traffic within Piarco TMA is REQUIRED to have a flight plan. If the pilot does not file one, you are responsible for creating it. At minimum, it should include the **aircraft type, departure airport, destination airport and cruise altitude**.

VFR Phraseology example:

N129SJ: Piarco Ground, N129SJ, ready for startup and clearance to Robinson.

TTPP\_GND: N129SJ, cleared to Robinson, via VFR direct, Climb to 3500, squawk 5062.

(Pilot Readback)

TTPP\_GND: N129SJ, ATC clearance is correct, startup approved, runway 10 in use, QNH 1017, advise when ready to taxi.

Local Traffic:

(After startup)

9Y-SJT: Piarco ground, 9Y-SJT, information BRAVO, request taxi for pattern work.

TTPP\_GND: 9Y-SJT, Piarco ground, taxi to holding point B3 via B.

## **2-3 IFR DEPARTURES**

While issuing IFR clearance, do your best to ensure that all IFR departures comply with preferred routing. If a pilot reports unable, make adjustments as necessary. Coordinate any special requests with Piarco Approach.

All IFR departures must be given clearance with the following information:

[CALLSIGN] [CLEARANCE LIMIT] [ROUTE] [INITIAL/FINAL FLIGHT LEVEL] [SQUAWK CODE]

IFR departures shall be instructed to maintain FL070 initially unless requested lower.

Optional: You can also give instructions to maintain runway heading until specified altitude before turning on course in the ATC clearance. This is particularly useful to guide pilots in the absence of further ATC.

Phraseology example:

AJT8210: Piarco ground, AJT8210 ready to copy IFR to Miami.

TTPP\_GND: AJT8210 cleared to Miami via PERRY, then as filed. After departure maintain runway heading until 4100 feet, Climb to FL070, squawk 7210.

(Pilot Readback)

TTPP\_GND: AJT8210, readback correct, runway 10 is in use, QNH 1016, advise when ready for push and start.

Another example:

TTPP\_GND: Piarco control clears BWA1512 to Robinson via the R515, flight planned route. Climb and maintain FL070, squawk 4436.

## **CHAPTER 3: GROUND CONTROL**

## **3-1 OVERVIEW**

Piarco & Robinson ground are responsible for ATC clearances, airside movement areas and taxiways. The transfer of control point between ground and local controllers will be when the aircraft is at its assigned holding point, when the ground controller no longer needs to provide any further instructions to the aircraft or when the aircraft vacates the runway.

Piarco ramp/apron control is responsible for airside movements for aircraft at the north terminal & apron only. The transfer of control point between Piarco apron & Piarco ground will be after aircraft receives ATC clearance from the ground controller and at holding points W & Z. This position may only be opened if TTPP\_GND or higher-rated ATC is online.

## **3-2 GROUND MOVEMENT**

In the East Caribbean, the wind favors east operations at most times so therefore runway 10 is used as the default runway at Piarco to sequence departing and arriving traffic.

At Piarco, the north terminal & apron accommodates domestic & international passenger flights while general aviation, helicopter and cargo flights park at the south terminal & apron.

Departures parked at the north of the airport shall taxi to runway 10 (HP B3) via A, A1, B1, B, and cross runway 10, however pilots may request intersection departure from A1 and departures parked at the south terminal & apron shall taxi to holding point B3 via B and you may allow intersection B1 departures if requested.

At Robinson, runway 11 is used as the default runway to sequence departures & arrivals.

Phraseology example:

LIA311: Piarco ground, LIA311, ready to taxi.

TTPP\_GND: LIA311, taxi to holding point A1, runway 10, via W and A.

**Ground Diagrams for Piarco Int'l** 





# **Piarco North Apron**

| GATE<br>NUMBER | CAPACITY                                                                            |
|----------------|-------------------------------------------------------------------------------------|
| N1             | Can accommodate MD80, A320, B727, B737, B757, ATR72                                 |
| N2             | Can accommodate MD80, A320, B727, B737, B757, ATR72                                 |
| N3             | Can accommodate MD80, B757, A300, B767-400, MD11, ATR72                             |
| N4             | Can accommodate A320, B727, B737, B757                                              |
| N5             | Can accommodate B757, B767-300, B767-400, A300, A330, B777, B747-400, ATR72         |
| <b>N</b> 6     | Can accommodate MD80, B737, A300, B767-300, ATR72                                   |
| N7             | Can accommodate MD80, B737, B757, A300, B767-300, ATR72                             |
| N8             | Can accommodate MD80, B737, B757, CRJ, ATR72                                        |
| N9             | Can accommodate MD80, B757, A300, B767-300, ATR72                                   |
| N10            | Can accommodate MD80, A300, B767-300, ATR72                                         |
| N11            | Can accommodate B757, A300, B767-300, B767-400, B777, B747-400, B737, ATR72         |
| N12            | Can accommodate B737, B757                                                          |
| N13            | Can accommodate DHC8, MD80, A320, B727, B737, B757, A300, B767-300, B767-400, ATR72 |
| N14            | Can accommodate DHC8, MD80, B737, B757, A300, B767-300, ATR72                       |
| N15            | Can accommodate B737 and commuter aircraft up to and including ATR72                |
| N16            | Can accommodate commuter aircraft up to and including ATR72                         |
| N17            | Can accommodate commuter aircraft up to and including ATR72                         |
| N18-24         | Can accommodate aircraft of wingspan and length up to and including ATR72           |
| N25-28         | Can accommodate aircraft of wingspan and length up to and including B737            |
| N29            | Can accommodate aircraft of wingspan and length up to and including B767-300        |

Ground diagrams for Robinson Int'l





## **CHAPTER 4: AERODROME CONTROL**

## **4-1 OVERVIEW**

Piarco Tower is responsible for the active runways and traffic operating within Piarco ATZ (Aerodrome traffic zone). On VATSIM, you control top-down when Ground is offline.

Robinson Tower is responsible for the active runways and traffic operating within Robinson ATZ.

The transfer of control point between local and approach controllers will be after reporting the aircraft airborne or when the aircraft is given entry instructions into the aerodromes airspace or when the aircraft is established on a standard instrument approach procedure.

## **4-2 VFR TRAFFIC**

Piarco VFR departures shall remain well clear of the final approach path to runway 10 unless specifically authorized by ATC.

Circling to land north of TTCP is not authorized. RWY 11 right hand traffic pattern is preferred.

## **4-3 DEPARTURE PROCEDURES**

IFR departures shall be instructed to maintain runway heading after departure until a specified altitude before making their turn on course due to surrounding terrain and minimum vectoring altitudes.

Runway 10 NORTHBOUND (to intercept northbound routes UG449, G449, UA324, A324, UL205, UR515, R515) shall maintain runway heading (105°) to 4100ft before turning left on course.

Runway 10 SOUTHBOUND (to intercept southbound routes UG449, G449, UA324, A324, UA562, A562, UA552, A552, UA563, A563) shall maintain runway heading (105°) to 2200ft before turning right on course.

Runway 28 NORTHBOUND shall maintain runway heading (285°) to 4100ft before turning right on course.

Runway 28 SOUTHBOUND shall maintain runway heading (285°) to 2200ft before turning left on course.

## **4-4 UNPUBLISHED PROCEDURES**

This section is for the special handling of aircraft without charts onboard. If a pilot reports missed, the aircraft should be instructed to "execute published missed approach". If the pilot reports unable or no charts onboard, instruct the aircraft as prescribed.

Aircraft should be instructed to climb to 2000 FT and fly runway heading. Contact Piarco Approach for resequencing.

## 4-5 RUNWAY SELECTION

Runway selection will be determined based on the current and forecasted weather, runway availability and the current forecasted traffic volume. Runway 28 is the calm wind runway at Piarco & runway 29 is the calm wind runway at Robinson.

## **CHAPTER 5: PIARCO APPROACH**

## **5-1 OVERVIEW**

This chapter covers common pressures used within Piarco TMA at the approach level.

The transfer of control point between the approach and center controllers will be (departures) reaching FL150 and/or at the lateral boundaries of the TMA or (arrivals) reaching FL160 and/or at the lateral boundaries of Piarco TMA.

## **5-2 SEPARATION MINIMA**

Aircraft shall maintain a separation minimum of 5NM within the Piarco TMA.

## **5-3 AIRSPACE DIMENSIONS**



## **5-4 DEPARTURES**

TTPP does not have any Standard Instrument Departures (SID). All departures are to be cleared to a fix within Piarco TMA boundary, or given radar vectors to intercept an airway/radial/track. If a pilot files a route that begins outside of the Piarco TMA, it is to be coordinated with TTZP\_CTR or adjacent control facility.

Phraseology example:

TTPP\_APP: DAE1322, radar contact passing 4500ft, turn left direct TABEX, climb to FL150.

## **5-5 ARRIVALS**

TTPP does not have any Standard Terminal Arrival Routes (STAR). All arrivals will be provided with radar vectors as necessary or cleared to one of the Initial Approach Fixes (IAF) or Intermediate Fix (IF).

The Minimum Vectoring Altitudes (MVA) within the Piarco approach sector is 4100FT north of TTPP, 2200ft south of TTPP and 3000ft over the island of Tobago (TTCP). These altitudes are indicated on your sector file.



# ADAMS TMA STANDARD OPERATING PROCEDURES

This document has been distributed for Virtual Air Traffic Simulation purposes only.

# **TABLE OF CONTENT**

#### **CHAPTER 1: GENERAL INFORMATION**

**1-1 AERODROME SPECIFICATIONS** 

**1-2 OPERATIONAL POSITIONS** 

**1-3 BEACON CODES** 

#### **CHAPTER 2: CLEARANCE DELIVERY**

2-1 OVERVIEW 2-2 VFR DEPARTURES 2-3 IFR DEPARTURES

### **CHAPTER 3: GROUND CONTROL**

3-1 OVERVIEW3-2 STARTUP CLEARANCE3-3 GROUND MOVEMENT

## **CHAPTER 4: AERODROME CONTROL**

4-1 OVERVIEW
4-2 VFR TRAFFIC
4-3 INITIAL HEADING
4-4 UNPUBLISHED PROCEDURES
4-5 RUNWAY SELECTION
4-6 NOISE ABATEMENT

#### **CHAPTER 5: ADAMS APPROACH**

5-1 OVERVIEW 5-2 SEPARATION MINIMA 5-3 AIRSPACE DIMENSIONS 5-4 DEPARTURES 5-5 ARRIVALS 5-6 COORDINTAION

## **CHAPTER 1: GENERAL INFORMATION**

# 1-1 AIRPORT SPECIFICATIONS – GRANTLEY ADAMS (TBPB)

| AIRSPACE (ATZ)      | CLASS D        |  |
|---------------------|----------------|--|
| ELEVATION           | 169 FT         |  |
| LATERAL DIMENSION   | SFC – 2000 AAL |  |
| VERTICAL DIMENSION  | 5NM            |  |
| PATTERN ALTITUDE    | 1000 FT AGL    |  |
| TRANSITION ALTITUDE | 3000 FT        |  |
| STANDARD FLOW       | EAST           |  |

# **1-2 OPERATIONAL POSITIONS**

| POSITION | IDENTIFIER     | FREQUENCY |
|----------|----------------|-----------|
| TBPB_GND | ADAMS GROUND   | 121.900   |
| TBPB_TWR | ADAMS TOWER    | 118.700   |
| TBPB_APP | ADAMS APPROACH | 129.350   |

## **1-3 BEACON CODES**

| DOMESTIC FLIGHTS  | 1701 – 1777 |
|-------------------|-------------|
| INT'L FLIGHTS     | 2701 – 2777 |
| LOCAL/VFR FLIGHTS | 1001 – 1077 |

## **CHAPTER 2: CLEARANCE DELIVERY**

## **2-1 OVERVIEW**

For flights in the Piarco FIR airspace requesting cruising levels above FL240, we need to coordinate with the Area Control Center (ACC) for startup clearance and requested flight level.

All clearance delivery procedures are handled by the Ground Controller. At Adams, ATC clearances are normally issued during taxi to the active runway, but can also be given any time after the pilot has been issued startup clearance. Due to the nature of the VATSIM network, errors in the flight plans are common, so controllers should verify that flight plans are without discrepancies and the pilot has the current weather/ATIS information.

## **2-2 VFR DEPARTURES**

All VFR traffic at Adams is REQUIRED to have a flight plan. If the pilot does not file one, you are responsible for creating it. At minimum, it should include the **aircraft type, departure airport, destination airport and cruise altitude**.

VFR flights in Adams airspace are not permitted above FL085.

VFR Phraseology example:

TBPB\_GND: SVD616, copy ATC Clearance.

(Pilot Acknowledges)

TBPB\_GND: Adams control clears SVG616 to Mustique direct, maintain FL065, right turn after departure, squawk 1062.

(Pilot Readback)

TBPB\_GND: SVD616, ATC clearance is correct, contact Adams tower on 118.700.

VFR Phraseology example 2:

## IF HIGHER THAN FL085 REQUESTED

TBPB\_GND: Adams control clears 8P-EAL to Piarco, while in Adams airspace maintain FL085 or below, right turn after departure, squawk 1063.

(Pilot Readback)

TBPB\_GND: 8P-EAL, ATC clearance is correct, contact Adams tower on 118.700.

Local Traffic:

8P-JOY: Adams ground, 8P-JOY, information BRAVO, request taxi for pattern work.

TBPB\_GND: 8P-JOY, Adams ground, taxi to the holding point on taxiway J, squawk 1004.

## 2-3 IFR DEPARTURES

While issuing IFR clearance, do your best to ensure that all IFR departures comply with preferred routing. If a pilot reports unable, make adjustments as necessary. Coordinate any special requests with Adams Approach.

All IFR departures must be given clearance with the following information:

[CALLSIGN] [CLEARANCE LIMIT] [ROUTE] [INITIAL/FINAL FLIGHT LEVEL] [SQUAWK CODE]

Phraseology example:

TBPB\_GND: AAL1089, Copy ATC Clearance.

(Pilot Acknowledges)

TBPB\_GND: AAL1089, cleared to Miami via the UA555 ILURI, then as filed. Climb to FL360, squawk 2763.

(Pilot Readback)

TBPB\_GND: AAL1089, readback correct.

Another example:

TBPB\_GND: Adams control clears BWA420 to V.C Bird via BORUS, flight planned route. Maintain FL240, squawk 1720.

## **CHAPTER 3: GROUND CONTROL**

## **3-1 OVERVIEW**

Adams ground is responsible for all airside movement areas and taxiways. The transfer of control point between ground and local controllers will be when the aircraft is at its assigned holding point, when the ground controller no longer needs to provide any further instructions to the aircraft or when the aircraft vacates the runway.

## **3-2 STARTUP CLEARANCE**

Once a pilot's flight plan is sufficient, assign the appropriate squawk code and issue startup clearance as necessary.

If you get requests for IFR clearance at the gate, just inform the pilot that they will be given clearance during taxi and issue startup clearance as necessary.

Phraseology example:

BAW254: Adams ground, BAW254, Stand 15, information D on board, request push and start.

TBPB\_GND: BAW254, Adams ground, push and start approved, time 26, advise when ready to taxi.

Another example:

LIA311: Adams ground, LIA311, ready for startup.

TBPB\_GND: LIA311, Adams ground, startup approved, time 10, runway 09 is in use, QNH 1017. Advise when ready to taxi.

## **3-3 GROUND MOVEMENT**

In the East Caribbean the winds favor east operations at most times so therefore runway 09 is used as the default runway at Adams to sequence departing and arriving traffic.

Departures parked at the north of the airport will use taxiway A for taxi to runways 09 & 27.

Departure parked at the south GA ramp will taxi to J or K and back taxi on the runway if necessary.

For light and small aircraft, holding point C may be used for departure if requested. Medium, large and heavy aircraft will often take holding point B.

Arriving aircraft landing runway 09 will vacate at either E, F, G.

Arriving aircraft landing runway 27 with vacate at either D, C, A.

Phraseology example:

LIA311: Adams ground, LIA311, ready for taxi.

TBPB\_GND: LIA311, taxi via A to holding point C, runway 09.

## **CHAPTER 4: AERODROME CONTROL**

## **4-1 OVERVIEW**

Adams Tower is responsible for the active runways and traffic operating within the Adams ATZ & CTR. On VATSIM, you control top-down when Ground is offline.

The transfer of control point between local and approach controllers will be after reporting the aircraft airborne or when the aircraft is given entry instructions into the aerodromes airspace or when the aircraft is established on a standard instrument approach procedure.

## **4-2 VFR TRAFFIC**

It is preferred that whenever possible all VFR patterns be configured for Runway 09 with a right traffic pattern to avoid aircraft flying over land.

At Adams we use "report abeam the tower" when aircraft are on the left downwind. This is done because of where the control tower is situated and the position in which the tower controller sits does not offer a full view of traffic on a left downwind.

In the event that you have traffic departing the circuit to fly around the island and there is other aircraft that is likely to be a factor, Adams tower will give advisory as necessary and have them looking out for each other.

Phraseology example:

TBPB\_TWR: 8P-JOY, leave the traffic circuit, monitor this frequency.

## **4-3 DEPARTURE PROCEDURE**

Aircraft departing TBPB shall be instructed to make a left or right turn after departure depending on their direction of flight. However, if Adams approach is online an initial heading can be coordinated.

Phraseology example:

TBPB\_TWR: IWY205, left turn after departure, cleared for takeoff runway 09, surface wind 090@08.

## **4-4 UNPUBLISHED PROCEDURES**

This section is for the special handling of aircraft without charts onboard. If an aircraft reports missed, the aircraft should be instructed to "execute published missed approach". If the pilot reports unable or no charts onboard, instruct the aircraft as prescribed.

Aircraft should be instructed to climb to 3000FT and fly runway heading. Contact Adams departure for resequencing.

## 4-5 RUNWAY SELECTION

Runway selection will be determined based on the current and forecasted weather, runway availability and the current forecasted traffic volume. Runway 27 is the calm wind runway at Grantley Adams.

| ADAMS CONTROL ZONE          |                 |  |
|-----------------------------|-----------------|--|
| AIRSPACE                    | VERTICAL LIMIT  |  |
| CLASS D                     | SFC – 3000 FT   |  |
| ADAMS TERMINAL CONTROL AREA |                 |  |
| CLASS D                     | 3000 FT – FL085 |  |
| CLASS A                     | FL085 – FL245   |  |

### **4-6 NOISE ABATEMENT**

#### LOCAL TIME + 4 HOURS = UTC(Z)

#### AIRCRAFT ARRIVING RWY 09/27

All IFR aircraft shall maintain an altitude of 900 m (3,000 ft) until established on an instrument let-down procedure.

Jet aircraft and propeller driven aircraft in excess of 5,700 kg VFR and on a visual approach shall:

- a) Maintain a minimum flight altitude of 900 m (3,000 ft) while flying over the island.
- b) Not be less than 5 NM from the shoreline if operating below 900 m (3,000 ft).
- c) Intercept the localizer not closer than 5 NM if approaching from the south.

#### AIRCRAFT DEPARTING RWY 09/27 NORTHBOUND

Prior to initiating northbound turns for departures on RWY 09/27:

- a) Jet aircraft shall climb to 750 m (2,500 ft) or proceed to 7 NM, whichever comes first, and continue climbing at best possible rate of climb.
- b) Quad turboprop aircraft shall climb to 600 m (2,000 ft) or proceed to 5 NM, whichever comes first, and continue climbing at best possible rate of climb.
- c) Propeller driven aircraft in excess of 5,700 kg shall climb to 450 m (1,500 ft) and continue climbing at best possible rate of climb.
- All other propeller driven aircraft shall climb to 300 m (1,000 ft) and continue normal climbing.

#### AIRCRAFT DEPARTING RWY 09/27 SOUTHBOUND

Prior to initiating southbound turns for departures on RWY 09/27:

- a) Jet aircraft shall climb to 600 m (2,000 ft) or proceed to 3 NM, whichever comes first, and continue normal climbing.
- b) Quad turboprop aircraft shall climb to 450 m (1,500 ft) or proceed to 3 NM, whichever comes first, and continue normal climbing.
- c) All other propeller driven aircraft shall climb to 300 m (1,000 ft) or proceed to 3 NM, whichever comes first, and continue normal climbing.

Runway 27 departures will not normally be permitted between 0200 UTC and 1000 UTC unless meteorological conditions dictate otherwise.

## **CHAPTER 5: ADAMS APPROACH**

## **5-1 OVERVIEW**

This chapter covers common pressures used within Adams TMA at the approach level.

The transfer of control point between the approach and center controllers will be (departures) reaching FL240 and/or at the lateral boundaries of the TMA or (arrivals) reaching FL250 and/or at the lateral boundaries of Adams TMA.

## **5-2 SEPARATION MINIMA**

Aircraft shall maintain a separation minimum of 10NM within Adams TMA.

## **5-3 AIRSPACE DIMENSIONS**



## **5-4 DEPARTURES**

TBPB does not have any Standard Instrument Departures (SID). All departures are to be cleared to a fix within or on the Adams TMA boundary, or given radar vectors to intercept an airway/radial/track. If a pilot files a route that starts outside of the Adams TMA, it is to be coordinated with TTZP\_CTR.

Phraseology example:

TBPB\_APP: AAL1089, radar contact, turn left heading 280 to intercept the A555.

## **5-5 ARRIVALS**

TBPB does not have any Standard Terminal Arrival Routes (STAR). All arrivals will be provided with radar vectors as necessary or cleared to one of the Initial Approach Fixes (IAF) or Intermediate Fix (IF). Remember that you cannot clear for the approach with an intercept angle greater than 90 degrees.

The Minimum Vectoring Altitude (MVA) for Adams approach is 3000FT over the island of Barbados.

## **5-6 COORDINATION**

Adams TMA is responsible for coordination with 5 different facilities in the FIR which are TGPY\_APP, TVSA\_APP, TLPL\_APP, TFFF\_APP, and TTZP\_CTR.

When coordinating traffic with non-radar facilities, you are required to inform the controller of the aircraft's estimated time/distance to cross the boundary and requested flight level prior to entering their airspace. For arrivals, the non-radar controller shall provide you with the same information then you can assign a squawk code for transit.

Coordination example:

TBPB\_APP: Argyle APP, Adams.

TVSA\_APP: Go ahead.

TBPB\_APP: LIA311, airborne time 10, estimates GOTER at 1523Z, FL120.

TVSA\_APP: Copy, and descent to 5000 approved if needed.

TBPB\_APP: Thanks, SJ.



# MARTINIQUE TMA STANDARD OPERATING PROCEDURES

This document is to be used for Virtual Air Traffic Simulation purposes only.

# **TABLE OF CONTENT**

#### **CHAPTER 1: GENERAL INFORMATION**

1-1 AERODROME SPECIFICATIONS1-2 OPERATIONAL POSITIONS1-3 BEACON CODES

### **CHAPTER 2: CLEARANCE DELIVERY**

2-1 OVERVIEW2-2 VFR DEPARTURES2-3 IFR DEPARTURES2-4 STANDARD INSTRUMENT DEPARTURES

#### **CHAPTER 3: GROUND CONTROL**

3-1 OVERVIEW3-2 STARTUP CLEARANCE3-3 GROUND MOVEMENT

### **CHAPTER 4: AERODROME CONTROL**

4-1 OVERVIEW4-2 VFR TRAFFIC4-3 UNPUBLISHED PROCEDURES4-4 RUNWAY SELECTION4-5 NOISE ABATEMENT

#### **CHAPTER 5: MARTINIQUE APPROACH**

5-1 OVERVIEW 5-2 SEPARATION MINIMA 5-3 AIRSPACE DIMENSIONS 5-4 DEPARTURES 5-5 ARRIVALS 5-6 VFR REPORTING POINTS 5-7 ST. LUCIA CONTROL ZONE

## **CHAPTER 1: GENERAL INFORMATION**

1-1 AERODROME SPECIFICATIONS – AIME CESARE (TFFF)

| AIRSPACE            | CLASS D       |  |
|---------------------|---------------|--|
| ELEVATION           | 16 FT         |  |
| LATERAL DIMENSION   | SFC – 1500 FT |  |
| VERTICAL DIMENSION  | 10 NM         |  |
| PATTERN ALTITUDE    | 1000 FT AGL   |  |
| TRANSITION ALTITUDE | 9000 FT       |  |
| STANDARD FLOW       | EAST          |  |

## **1-2 OPERATIONAL POSITIONS**

| POSITION  | IDENTIFIER          | FREQUENCY |
|-----------|---------------------|-----------|
| TFFF_GND  | MARTINIQUE GROUND   | 121.900   |
| TFFF_TWR  | MARTINIQUE TOWER    | 118.500   |
| TFFF_APP  | MARTINIQUE APPROACH | 121.000   |
| TFFF_ATIS | ATIS                | 127.850   |

## **1-3 BEACON CODES**

| DOMESTIC FLIGHTS | 1101 – 1177 |
|------------------|-------------|
| INT'L FLIGHTS    | 6401 – 6477 |
| LOCAL FLIGHTS    | 4001 – 4077 |

## **CHAPTER 2: CLEARANCE DELIVERY**

## 2-1 OVERVIEW

For flights in the Piarco FIR airspace requesting cruising levels above FL240, we coordinate with the Area Control Center (ACC) for startup clearance and requested flight level.

All clearance delivery procedures are handled by the Ground Controller. At Martinique, ATC clearances are issued at the gate, before push back and startup.

## 2-2 VFR DEPARTURES

All VFR traffic within Martinique TMA is REQUIRED to have a flight plan. If the pilot does not file one, you are responsible for creating it. At minimum, it should include the **aircraft type, departure airport, destination airport and cruise altitude**.

VFR Phraseology example:

N129SJ: Martinique Ground, N129SJ, ready for startup and clearance to Hewanorra.

TFFF\_GND: N129SJ, cleared to Hewanorra, Climb to 4500 ft, squawk 1162.

(Pilot Readback)

TFFF\_GND: N129SJ, readback correct, startup approved, runway 10 in use, QNH 1017, advise when ready to taxi.

Special VFR Minimums (Day time only):

For aircraft the visibility must be in excess of 1500 M (1.5 KM) and for helicopters 800M (0.8 KM).
## **2-3 IFR DEPARTURES**

When issuing IFR clearance, do your best to ensure that all IFR departures comply with preferred routing. If a pilot reports unable, make adjustments as necessary. Coordinate any special requests with Martinique Approach.

All IFR departures must be given clearance with the following information:

[CALLSIGN] [CLEARANCE LIMIT] [ROUTE] [INITIAL/FINAL FLIGHT LEVEL] [SQUAWK CODE]

Phraseology example:

FWI511: Martinique Ground, FWI511 ready to copy IFR to Orly.

TFFF\_GND: FWI511 cleared to Paris-Orly via SESPO1R departure, then as filed. Climb to FL240 initially, squawk 6410.

(Pilot Readback)

TFFF\_GND: FWI511, readback correct, runway 10 is in use, QNH 1016, advise when ready for push and start.

Another example:

TFFF\_GND: Martinique control clears MTN7116 to George Charles via direct SLU, flight planned route. Climb to 4000 ft, squawk 1101.

## 2-4 STANDARD INSTRUMENT DEPARTURES

Although it is preferred to assign RNAV1 SIDs to departing IFR aircraft, it is not always required. Departures can also be cleared to a fix within the Martinique TMA boundary, or given radar vectors to intercept an airway/radial/track.

For connecting flights between TFFF & TFFR it is required for pilots to comply with a LIDOS RNAV1 SID and requested flight level in their flight plan should be an even level.

There are no published initial altitudes for TFFF SIDs.

| MARTINIQUE RNAV SIDS    |                               |                 |                |  |
|-------------------------|-------------------------------|-----------------|----------------|--|
| RUNWAY                  | SID                           | DIRECTION       | INITIAL CLIMB  |  |
|                         | BORUS [BORU1R]                | SE              |                |  |
|                         | DOM1R                         | N, NW           |                |  |
|                         | EMOLA [EMOL1R]                | W, NW           |                |  |
| 40                      | KATIM [KATI1R]                | NW              |                |  |
| 10                      | KISES [KISE1R]                | S, SW           | NO RESTRICTION |  |
|                         | LIDOS [LIDO1R]                | N, NW           |                |  |
|                         | SESPO [SESP1R]                | NE              |                |  |
|                         | SOMON [SOMO1R]                | SW              |                |  |
|                         |                               |                 |                |  |
|                         | BORUS [BORU1J]                | SE              |                |  |
|                         | DOM1J                         | N, NW           |                |  |
|                         | EMOLA [EMOL1J]                | W, NW           |                |  |
|                         | KATIM [KATI1J]                | NW              | NO RESTRICTION |  |
| 28                      | KISES [KISE1J]                | S, SW           |                |  |
| 20                      | LIDOS [LIDO1J]                | N, NW           |                |  |
|                         | SESPO<br>[SESP1J]<br>[SESP1S] | NE              |                |  |
|                         | SOMON [SOMO1J]                | SW              |                |  |
|                         | MARTINIQUE CON                | NVENTIONAL SIDS |                |  |
|                         | BORUS [BORU5E]                | SE              |                |  |
|                         | DOM5E                         | N, NW           |                |  |
|                         | EMOLA [EMOL5E]                | W, NW           |                |  |
| 10                      | LIDOS [LIDO5E]                | N, NW           | NO RESTRICTION |  |
|                         | SESPO [SESP5E]                | NE              |                |  |
|                         | SLU5E                         | S               |                |  |
|                         | SOMON [SOMO5E]                | SW              |                |  |
| CONTINUED ON NEXT PAGE. |                               |                 |                |  |

| MARTINIQUE CONVENTIONAL SIDS PT.2 |                               |           |                |  |
|-----------------------------------|-------------------------------|-----------|----------------|--|
| RUNWAY                            | SID                           | DIRECTION | INITIAL CLIMB  |  |
|                                   | BORUS [BORU5W]                | SE        |                |  |
|                                   | DOM5N<br>DOM5W                | N, NW     |                |  |
|                                   | EMOLA [EMOL5W]                | W, NW     |                |  |
| 28                                | LIDOS<br>[LIDO5N]<br>[LIDO5W] | NW        | NO RESTRICTION |  |
|                                   | SESPO [SESP5W]                | S, SW     |                |  |
|                                   | SLU5W                         | S         |                |  |
|                                   | SOMON [SOMO5W]                | SW        | ]              |  |

## **CHAPTER 3: GROUND CONTROL**

#### **3-1 OVERVIEW**

Martinique ground is responsible for ATC clearances, airside movement areas and taxiways. The transfer of control point between ground and local controllers will be when the aircraft is at its assigned holding point, when the ground controller no longer needs to provide any further instructions to the aircraft or when the aircraft vacates the runway.

#### **3-3 GROUND MOVEMENT**

Runway 10 is used as the default runway to sequence departing and arriving traffic at Martinique.

Taxiways L & D are prohibited to aircraft with wingspan greater than 28m (B737, B767, B777, A350 etc.). Such aircraft departing runway 10 shall taxi via B and backtrack.

Phraseology example:

LIA311: Martinique ground, LIA311, ready to taxi. TFFF\_GND: LIA311, taxi via L to holding point D, runway 10.



Aime Cesaire/Martinique ground diagrams:





## **CHAPTER 4: AERODROMTE CONTROL**

#### **4-1 OVERVIEW**

Martinique Tower is responsible for the active runways and traffic operating within Martinique CTR (Control zone). On VATSIM, you control top-down when Ground is offline.

The transfer of control point between aerodrome and approach controllers will be after reporting the aircraft airborne or when the aircraft is given entry instructions into the aerodromes airspace or when the aircraft is established on a standard instrument approach procedure.

#### **4-2 VFR TRAFFIC**

Preferred circuit pattern is the one South of RWY axis.

#### **4-3 UNPUBLISHED PROCEDURES**

This section is for the special handling of aircraft without charts onboard or will be conducting a go-around.

If a pilot reports missed, the aircraft should be instructed to "execute published missed approach". If the pilot reports unable or no charts onboard, instruct the aircraft as prescribed.

Aircraft should be instructed to climb to 3000 feet and fly runway heading. Contact Martinique Approach for resequencing.

#### **4-5 RUNWAY SELECTION**

Runway selection will be determined based on the current and forecasted weather, runway availability and the current forecasted traffic volume. Runway 28 is the calm wind runway at Martinique.

## **4-5 NOISE ABATEMENT**

For all aircraft, avoid overflying Fort-de-France Schoelcher sector. Prohibited below 3000 feet.

Overflying towns of Saint-Espirit, Ducos & Lamentin are prohibited below 1500 feet for single piston engine aircraft and 3000 feet for turbine aircraft.





## 4-5 NOISE ABATEMENT PT.2





## **CHAPTER 5: MARTINIQUE APPROACH**

#### **5-1 OVERVIEW**

This chapter covers common pressures used within Martinique TMA at the approach level.

The transfer of control point between the approach and center controllers will be (departures) reaching FL240 and/or at the lateral boundaries of the TMA or (arrivals) reaching FL250 and/or at the lateral boundaries of Martinique TMA.

#### **5-2 SEPARATION MINIMA**

Aircraft shall maintain a separation minimum of 10NM within Martinique TMA.

## **5-3 AIRSPACE DIMENSIONS**



## 5-3 AIRSPACE DIMENSIONS PT. 2

| MARTINIQUE TERMINAL CONTROL AREA (ABOVE CTR) |                |                       |                                                                                                  |  |
|----------------------------------------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------|--|
| PARTITION                                    | CLASSIFICATION | VERTICAL<br>DIMENSION | LATERAL<br>DIMENSION                                                                             |  |
| PART 1                                       | CLASS D        | 1500FT – FL105        | 25 NM RADIUS<br>CENTERED ON<br>FOF (NOT<br>INCLUDING ST.<br>LUCIA TMA)                           |  |
| PART 2                                       | CLASS D        | 4500FT – FL105        | 25 NM RADIUS<br>CENTERED ON<br>BNE (INSIDE<br>LATERAL<br>BOUNDARIES<br>OF ST. LUCIA<br>TMA ONLY) |  |
| PART 3                                       | CLASS D        | FL105 – FL195         | WITHIN<br>MARTINIQUE<br>TMA<br>BOUNDARIES                                                        |  |
| PART 4                                       | CLASS E        | 3000FT – FL105        | WITHIN<br>MARTINIQUE &<br>ST. LUCIA TMA<br>BOUNDARIES                                            |  |
| PART 5                                       | CLASS A        | FL195 – FL245         | WITHIN<br>MARTINIQUE<br>TMA<br>BOUNDARIES                                                        |  |

#### **5-4 DEPARTURES**

Departing aircraft that have been assigned to an RNAV 1 SID will resume own navigation after takeoff while non-RNAV departures will receive radar vectors to intercept an airway/radial/track/fix or join a SID. If a pilot requests a route that starts outside of the Martinique TMA, it shall be coordinated with the adjacent facility or area control center.

Phraseology example:

TFFF\_APP: AFR841, Martinique approach, identified passing 3000ft, resume own navigation, climb FL240.

#### **5-5 ARRIVALS**

For connecting flights between TFFR & TFFF it is required for pilots to comply with a KATIM RNAV1 STAR and requested flight level in their flight plan should be an odd level.

RNAV1 STARs are preferential. All non-RNAV arrivals will be provided with radar vectors as necessary or cleared to one of the Initial Approach Fixes (IAF) or Intermediate Fix (IF). It is not advised that you clear an aircraft for instrument approach procedures with an intercept angle to the final approach course that is greater than 90 degrees.

| MARTINIQUE RNAV STARS (1D/ T/ X/ V) |                         |           |                            |                                     |  |
|-------------------------------------|-------------------------|-----------|----------------------------|-------------------------------------|--|
| RUNWAY                              | STAR                    | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |  |
|                                     |                         | BC        | DRUS                       |                                     |  |
|                                     | BORU1V                  | G         | VODAK                      | RNP                                 |  |
|                                     | BORU1X                  | 5E        | KAREX                      | ILSZ/VORZ/RNP                       |  |
|                                     |                         | D         | MO                         |                                     |  |
|                                     | DOM1D                   | N         | DEDET                      | RNP                                 |  |
|                                     | DOM1X                   | IN        | KAREX                      | ILZ/VORZ/RNP                        |  |
|                                     |                         | EN        | IOLA                       | Γ                                   |  |
|                                     | EMOL1X                  | NW        | KAREX                      | ILSZ/VORZ/RNP                       |  |
|                                     | KATIM                   |           |                            |                                     |  |
|                                     | KATI1D                  | N         | DEDET                      | RNP                                 |  |
| 10                                  | KATI1X                  |           | KAREX                      | ILSZ/VORZ/RNP                       |  |
|                                     | KISES                   |           |                            |                                     |  |
|                                     | KISE1V                  | COL       | VODAK                      | RNP                                 |  |
|                                     | KISE1X                  | 33E       | KAREX                      | ILSZ/VORZ/RNP                       |  |
|                                     |                         | SE        | SPO                        |                                     |  |
|                                     | SESP1D                  |           | DEDET                      | RNP                                 |  |
|                                     | SESP1T                  |           | VODAK                      | RNP                                 |  |
|                                     | SESP1V                  | NE        | VODAK                      | RNP                                 |  |
|                                     | SESP1X                  |           | KAREX                      | ILSZ/VORZ/RNP                       |  |
|                                     |                         | SC        | MON                        | •                                   |  |
| SOMO1X SW KAREX ILSZ/VORZ/RNP       |                         |           |                            |                                     |  |
|                                     | CONTINUED ON NEXT PAGE. |           |                            |                                     |  |

|        | MARTINIQUE RNAV STARS PT.2 (1A/ C/ L) |           |                            |                                     |  |
|--------|---------------------------------------|-----------|----------------------------|-------------------------------------|--|
| RUNWAY | STAR                                  | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |  |
|        |                                       | BOF       | RUS                        |                                     |  |
|        | BORU1C                                | SE        | CHARB                      | <b>RNP/VOR</b>                      |  |
|        | BORU1L                                | 52        | GADIL                      | <b>RNP/VOR</b>                      |  |
|        |                                       | DC        | M                          |                                     |  |
|        | DOM1A                                 | - N       | APDAB                      | RNP                                 |  |
|        | DOM1L                                 |           | GADIL                      | RNP/VOR                             |  |
|        | EMOLA                                 |           |                            |                                     |  |
|        | EMOL1A                                | NI\0/     | APDAB                      | RNP                                 |  |
|        | EMOL1L                                | INVV      | GADIL                      | <b>RNP/VOR</b>                      |  |
|        | KATIM                                 |           |                            |                                     |  |
| 28     | KATI1A                                | NI        | APDAB                      | RNP                                 |  |
|        | KATI1L                                | IN        | GADIL                      | <b>RNP/VOR</b>                      |  |
|        | KISES                                 |           |                            |                                     |  |
|        | KISE1C                                | 0.05      | CHARB                      | RNP/VOR                             |  |
|        | KISE1L                                | 3, 3E     | GADIL                      | <b>RNP/VOR</b>                      |  |
|        |                                       | SES       | SPO                        |                                     |  |
|        | SESP1L                                | NE        | GADIL                      | <b>RNP/VOR</b>                      |  |
|        |                                       | SON       | ION                        |                                     |  |
|        | SOMO1C                                | SW        | GADIL                      | RNP/VOR                             |  |
|        | SOMO1L                                | SW        | GADIL                      | <b>RNP/VOR</b>                      |  |

| MARTINIQUE CONVENTIONAL STARS (6F) |        |           |                            |                                     |  |
|------------------------------------|--------|-----------|----------------------------|-------------------------------------|--|
| RUNWAY                             | STAR   | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |  |
|                                    |        |           | BNE                        |                                     |  |
|                                    | BNE6F  | S         | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |
|                                    |        | В         | ORUS                       |                                     |  |
|                                    | BORU6F | SE        | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |
|                                    |        | D         | AMOV                       |                                     |  |
|                                    | DAMO6F | S, SE     | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |
|                                    |        | T         | DOM                        |                                     |  |
| A1 1                               | DOM6F  | Ν         | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |
| ALL                                | EMOLA  |           |                            |                                     |  |
|                                    | EMOL6F | NW        | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |
|                                    |        | ŀ         | <b>KATIM</b>               |                                     |  |
|                                    | KATI6F | Ν         | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |
|                                    |        | S         | ESPO                       |                                     |  |
|                                    | SESP6F | NE        | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |
|                                    |        | S         | OMON                       |                                     |  |
|                                    | SOMO6F | SW        | FOF                        | ILSY/ILSX/VORY<br>RWY10             |  |

| MARTINIQUE CONVENTIONAL STARS PT.3 (6A/ D/ G/ K/ P/ Q) |                |           |                            |                                     |
|--------------------------------------------------------|----------------|-----------|----------------------------|-------------------------------------|
| RUNWAY                                                 | STAR           | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |
|                                                        |                | BI        | NE                         |                                     |
|                                                        | BNE6A<br>BNE6G | c         | AGNOS                      | ILSY RWY10                          |
|                                                        | BNE6K          | 5         | KAREX                      | ILSZ/VORZ<br>RWY10                  |
|                                                        |                | BO        | RUS                        |                                     |
|                                                        | BORU6D         |           | DATIS                      | ILSY RWY10                          |
|                                                        | BORU6G         | SF        | GADIL                      | VOR RWY28                           |
|                                                        | BORU6K         |           | KAREX                      | ILSZ/VORZ<br>RWY10                  |
|                                                        |                | DAN       | NOV                        |                                     |
|                                                        | DAMO6G         |           | DATIS                      | ILSY RWY10                          |
|                                                        | DAMO6K         | S, SE     | KAREX                      | ILSZ/VORZ<br>RWY10                  |
|                                                        |                | DC        | M                          |                                     |
|                                                        | DOM6G          |           | GADIL                      | VOR RWY28                           |
| ALL                                                    | DOM6K          | N         | KAREX                      | ILSZ/VORZ<br>RWY10                  |
|                                                        | EMOLA          |           |                            |                                     |
|                                                        | EMOL6P         | S         | KAREX                      | ILSZ/VORZ                           |
|                                                        | EMOL6Q         | 0         |                            | RWY10                               |
|                                                        |                | KA        | ТІМ                        |                                     |
|                                                        | KATI6G         |           | GADIL                      | VOR RWY28                           |
|                                                        | KATI6P         | N         | KARFX                      | ILSZ/VORZ                           |
|                                                        | KATI6Q         |           | NANEX                      | RWY10                               |
|                                                        |                | SES       | SPO                        | 1                                   |
|                                                        | SESP6G         |           | GADIL                      | VOR RWY28                           |
|                                                        | SESP6K         | NE        | KAREX                      | ILSZ/VORZ<br>RWY10                  |
|                                                        |                | SON       | ION                        |                                     |
|                                                        | SOMO6G         | _         | GADIL                      | VOR RWY28                           |
|                                                        | SOMO6K         | SW        | KAREX                      | ILSZ/VORZ<br>RWY10                  |



## Martinique & Point-a-Pitre Minimum Vectoring Altitudes

| 5-6 VFR REPORTING POINTS                                            |           |  |
|---------------------------------------------------------------------|-----------|--|
| POINT                                                               | DIRECTION |  |
| LA TRINITÈ (THE TRINITY)                                            | NE        |  |
| LE ROBERT (ROBERT)                                                  | NE        |  |
| RIVIÈRE SALÈE (SALT RIVER)                                          | S         |  |
| ANSE CÈRON                                                          | S         |  |
| CAP SALOMON                                                         | SW        |  |
| CENTRALE ELETRIQUE<br>BELLENFONTAINE<br>(BELLEFONTAINE POWER PLANT) | NW        |  |



## 5-7 ST. LUCA CONTROL ZONE

St. Lucia Approach (TLPL\_APP) is responsible for providing ATC services to aircraft operating in the St. Lucia Control Zone.

The transfer of control point between Martinique approach and St. Lucia approach will be (departures) reaching 4500 feet and/or at the lateral boundaries of the TMA.

The transfer of control point between Martinique approach and St. Lucia approach will be (arrivals) reaching 6000 ft and/or at the lateral boundaries of Martinique TMA.

## **TLPL Departure Procedures:**

For aircraft making a left turn after takeoff RWY10, climb on RWY heading until reaching 4200 ft, then left turn.

For aircraft making a right turn after takeoff RWY10, climb on RWY heading until 2000 ft, then right turn.

Visual Maneuvering conducted south of RWY10 extended centerline at TLPL. Right hand traffic pattern preferred.

## **TLPC Departure Procedures:**

To join the A324 Southbound, climb west to intercept FOF VOR Radial 195 direct 'SV' NDB. Remain clear of cloud and in sight of surface until passing 4200 ft.

To join G642, climb north to join G642 from north. Remain clear of cloud and in sight of surface until passing 3250 ft.

To join A324 Northbound, climb north, remain clear of cloud and in sight of surface until passing 2000 ft.

High terrain in all quadrants of RWY.

## 5-7 ST. LUCIA CONTROL ZONE PT. 2

| ST. LUCIA CTR                    |                |                          |                                |  |
|----------------------------------|----------------|--------------------------|--------------------------------|--|
| AIRSPACE                         | VERTICAL LIMIT | LATERAL LIMIT            | FREQUENCY                      |  |
| CLASS D                          | 4500 FT        | 25 NM CENTERED<br>ON BNE | 119.800 (APP)                  |  |
| AERODROME TRAFFIC ZONES          |                |                          |                                |  |
| AERODROME &<br>CLASSIFICATION    | VERTICAL LIMIT | LATERAL LIMIT            | FREQUENCY                      |  |
| HEWANORRA<br>(TLPL) CLASS D      |                | 0.5 NM                   | 118.300 (TWR)<br>121.600 (GND) |  |
| GEORGE CHARLES<br>(TLPC) CLASS D | 2000 FT AAL    | 2.5 NM                   | 118.000 (TWR)<br>121.800 (GND) |  |

Airspace Dimensions:





# POINT-A-PITRE TMA STANDARD OPERATING PROCEDURES

This document is to be used for Virtual Air Traffic Simulation purposes only.

## **TABLE OF CONTENT**

#### **CHAPTER 1: GENERAL INFORMATION**

**1-1 AIRPORT SPECIFICATIONS** 

**1-2 OPERATIONAL POSITIONS** 

**1-3 BEACON CODES** 

#### **CHAPTER 2: CLEARANCE DELIVERY**

2-1 OVERVIEW2-2 VFR DEPARTURES2-3 IFR DEPARTURES2-4 STANDARD INSTRUMENT DEPARTURES

#### **CHAPTER 3: GROUND CONTROL**

3-1 OVERVIEW3-2 STARTUP CLEARANCE3-3 GROUND MOVEMENT

#### **CHAPTER 4: AERODROME CONTROL**

4-1 OVERVIEW4-2 TRAFFIC CIRCUIT4-3 UNPUBLISHED PROCEDURES4-4 RUNWAY SELECTION4-5 NOISE ABATEMENT

#### **CHAPTER 5: RAIZET APPROACH**

5-1 OVERVIEW 5-2 SEPARATION MINIMA 5-3 AIRSPACE DIMENSIONS 5-4 DEPARTURES 5-5 ARRIVALS 5-6 VFR REPORTING POINTS 5-7 DOMINICA TRAFFIC

## **CHAPTER 1: GENERAL INFORMATION**

1-1 AERODROME SPECIFICATIONS – LE RAIZET (TFFR)

| AIRSPACE            | CLASS D      |  |
|---------------------|--------------|--|
| ELEVATION           | 35 FT        |  |
| LATERAL DIMENSION   | SFC – 3000ft |  |
| VERTICAL DIMENSION  | 15 NM        |  |
| PATTERN ALTITUDE    | 700 FT AAL   |  |
| TRANSITION ALTITUDE | 9000 FT      |  |
| STANDARD FLOW       | EAST         |  |

## **1-2 OPERATIONAL POSITIONS**

| POSITION  | IDENTIFIER      | FREQUENCY |
|-----------|-----------------|-----------|
| TFFR_GND  | RAIZET GROUND   | 121.850   |
| TFFR_TWR  | RAIZET TOWER    | 118.400   |
| TFFR_APP  | RAIZET APPROACH | 121.300   |
| TFFR_ATIS | ATIS            | 127.600   |

## **1-3 BEACON CODES**

| DOMESTIC FLIGHTS | 1501 – 1577 |
|------------------|-------------|
| INT'L FLIGHTS    | 6501 – 6577 |
| LOCAL FLIGHTS    | 3101 – 3177 |

#### **CHAPTER 2: CLEARANCE DELIVERY**

## 2-1 OVERVIEW

For flights in the Piarco FIR airspace requesting cruising levels above FL240, we coordinate with the Area Control Center (ACC) for startup clearance and requested flight level.

All clearance delivery procedures are handled by the Tower Controller. At Le Raizet, ATC clearances are issued before push back & start up.

#### 2-2 VFR DEPARTURES

All VFR traffic within Point a Pitre TMA is REQUIRED to have a flight plan. If the pilot does not file one, you are responsible for creating it. At minimum, it should include the **aircraft type, departure airport, destination airport and cruise altitude**.

VFR Phraseology example:

N129SJ: Raizet Ground, N129SJ, ready for startup and clearance to Hewanorra.

TFFR\_GND: N129SJ, cleared to Hewanorra, Climb to 4500 ft, squawk 1162.

(Pilot Readback)

TFFR\_GND: N129SJ, readback correct, startup approved, runway 10 in use, QNH 1017, advise when ready to taxi.

## **2-3 IFR DEPARTURES**

While issuing IFR clearance, do your best to ensure that all IFR departures comply with preferred routing. If a pilot reports unable, make adjustments as necessary. Coordinate any special requests with Raizet Approach.

All IFR departures must be given clearance with the following information:

[CALLSIGN] [CLEARANCE LIMIT] [ROUTE] [INITIAL/FINAL FLIGHT LEVEL] [SQUAWK CODE]

Phraseology example:

FWI541: Raizet Tower, FWI541 ready to copy IFR to Orly.

TFFR\_TWR: FWI541 cleared to Paris-Orly via BOSET1F departure, then as filed. Initial climb 5000ft, squawk 6541.

(Pilot Readback)

TFFR\_TWR: FWI541, readback correct, runway 12 is in use, QNH 1016, advise when ready for push and start.

## 2-4 STANDARD INSTRUMENT DEPARTURES

It is preferred to assign RNAV 1 SIDs to departing IFR aircraft. Departures can also be cleared to a navaid within the Point-a-Pitre TMA boundary, or given radar vectors to intercept an airway/radial/track.

For connecting flights between TFFR & TFFF it is expected for pilots to comply with a KATIM RNAV1 SID and requested flight level in their flight plan should be an ODD level.

| LE RAIZET RNAV SIDS     |                |                |                |  |  |
|-------------------------|----------------|----------------|----------------|--|--|
| RUNWAY                  | SID            | DIRECTION      | INITIAL CLIMB  |  |  |
|                         | BIMBO [BIMB1F] | NW             | 5000           |  |  |
|                         | BOSET [BOSE1F] | NE             | 5000           |  |  |
|                         | DOM 1F         | S              | 7000           |  |  |
|                         | GORET [GORE1F] | W, NW          | 5000           |  |  |
| 12                      | ILURI [ILUR1F] | W              | 5000           |  |  |
|                         | KASKI [KASK1F] | N, NW          | 5000           |  |  |
|                         | KATIM [KATI1F] | S              | 7000           |  |  |
|                         | TASAR [TASA1F] | SE             | 7000           |  |  |
|                         | TULEX [TULE1F] | SW             | 7000           |  |  |
|                         |                |                |                |  |  |
|                         | BIMBO [BIMB1R] | NW             | 5000           |  |  |
|                         | BOSET [BOSE1R] | NE             | 5000           |  |  |
|                         | DOM 1R         | S              | 7000           |  |  |
|                         | GORET [GORE1R] | W, NW          | 5000           |  |  |
| 30                      | ILURI [ILUR1R] | W              | 5000           |  |  |
|                         | KASKI [KASK1R] | N, NW          | 5000           |  |  |
|                         | KATIM [KATI1R] | S              | 7000           |  |  |
|                         | TASAR [TASA1R] | SE             | 7000           |  |  |
|                         | TULEX [TULE1R] | SW             | 7000           |  |  |
|                         | LE RAIZET CON  | VENTIONAL SIDS | _              |  |  |
| 12                      | BIMBO [BIMB6E] | NW             | NO RESTRICTION |  |  |
|                         | BOSET [BOSE6E] | NE             |                |  |  |
|                         | DOM 6E         | S              |                |  |  |
|                         | DUNTA [DUNT6E] | SW             |                |  |  |
|                         | GORET [GORE6E] | W, NW          |                |  |  |
|                         | ILURI [ILUR6E] | W              |                |  |  |
|                         | KASKI [KASK6E] | N, NW          |                |  |  |
|                         | KATIM [KATI6E] | S              |                |  |  |
|                         | TASAR [TASA6E] | SE             |                |  |  |
|                         | TULEX [TULE6E] | SW             |                |  |  |
| CONTINUED ON NEXT PAGE. |                |                |                |  |  |

| LE RAIZET CONVENTIONAL SIDS PT.2 |                |           |  |  |  |
|----------------------------------|----------------|-----------|--|--|--|
| RUNWAY                           | SID            | DIRECTION |  |  |  |
|                                  | BIMBO [BIMB6W] | NW        |  |  |  |
|                                  | BOSET [BOSE6W] | NE        |  |  |  |
|                                  | DOM 6W         | S         |  |  |  |
|                                  | GORET [GORE6W] | SW        |  |  |  |
| 30                               | ILURI [ILUR6W] | W, NW     |  |  |  |
|                                  | KASKI [KASK6W] | W         |  |  |  |
|                                  | KATIM [KATI6W] | N, NW     |  |  |  |
|                                  | TASAR [TASA6W] | S         |  |  |  |
|                                  | TULEX [TULE6W] | SW        |  |  |  |

## **CHAPTER 3: GROUND CONTROL**

#### **3-1 OVERVIEW**

Ground and Tower communications are done on one frequency at Le Raizet, therefore Raizet Tower is responsible for ATC clearances, airside movement areas and taxiways.

#### **3-3 GROUND MOVEMENT**

Runway 12 is used as the default runway to sequence departing and arriving traffic at Le Raizet.

Phraseology example:

LIA311: Raizet ground, LIA311, ready to taxi. TFFR\_GND: LIA311, taxi via R to holding point F, runway 12.

## Le Raizet Ground Diagrams:



## **North Apron/ Terminal**



Point d'attente intermédiaire Intermediate holding point

## **South Apron/ Terminal**



## **Light Aviation Apron/ Hangars**



## **CHAPTER 4: AERODROME CONTROL**

## **4-1 OVERVIEW**

Raizet Tower is responsible for the active runways and traffic operating within Point-a-Pitre CTR (Control Zone).

The transfer of control point between aerodrome and approach controllers will be after reporting the aircraft airborne or when the aircraft is given entry instructions into the aerodromes airspace or when the aircraft is established on a standard instrument approach procedure.

## **4-2 VFR TRAFFIC**

Preferred circuit pattern is the one NORTH of RWY axis.

#### **4-3 UNPUBLISHED PROCEDURES**

This section is for the special handling of aircraft without charts onboard or will be conducting a go-around.

If a pilot report missed, the aircraft should be instructed to "execute published missed approach". If the pilot reports unable or no charts onboard, instruct the aircraft as prescribed.

| RUNWAY | ALTITUDE | HEADING     |
|--------|----------|-------------|
| 12     | 2500     | RWY HEADING |
| 30     | 3600     | RWY HEADING |

#### **4-5 RUNWAY SELECTION**

Runway selection will be determined based on the current and forecasted weather, runway availability and the current forecasted traffic volume. Runway 30 is the calm wind runway at Le Raizet.

## **4-5 NOISE ABATEMENT**

Jet and conventional aircraft in IFR shall remain in the RWY axis up to 2000 ft when climbing and 3.5 nm from PPR VOR before turning to their destination.

Long haul flights to Europe shall remain within the RWY axis up to 1000 ft when climbing and 3.5 NM from PPR VOR before turning to their destination.

Conventional aircraft in VFR, if northbound shall remain in RWY axis and turn left after passing the urban area of Les Abymes to the north.

Conventional aircraft in VFR, if southbound shall remain in the RWY axis and turn right after passing the neighborhood of Petit Perou in the south.

## **CHAPTER 5: RAIZET APPROACH**

#### **5-1 OVERVIEW**

This chapter covers common pressures used within Point-a-Pitre TMA at the approach level.

The transfer of control point between the approach and center controllers will be (departures) reaching FL240 and/or at the lateral boundaries of the TMA or (arrivals) reaching FL250 and/or at the lateral boundaries of Point-a-Pitre TMA.

#### **5-2 SEPARATION MINIMA**

Aircraft shall maintain a separation minimum of 10NM within Point-a-Pitre TMA.

## **5-3 AIRSPACE DIMENSIONS**



5-3 AIRSPACE DIMENSIONS PT. 2

| POINT-A-PITRE TERMINAL CONTROL AREA (ABOVE CTR) |                |                       |                                       |  |  |  |
|-------------------------------------------------|----------------|-----------------------|---------------------------------------|--|--|--|
| PARTITION                                       | CLASSIFICATION | VERTICAL<br>DIMENSION | LATERAL<br>DIMENSION                  |  |  |  |
| TMA 1                                           | CLASS D        | 2500FT – FL105        | REFER TO<br>FRENCH CAR<br>AIP ENR 6.1 |  |  |  |
| TMA 2                                           | CLASS D        | FL105 – FL195         | -                                     |  |  |  |
| TMA 3                                           | CLASS E        | 3000FT – FL105        | -                                     |  |  |  |
| TMA 4                                           | CLASS A        | FL195 – FL245         | -                                     |  |  |  |

## **5-4 DEPARTURES**

Departing aircraft that have been assigned to an RNAV 1 SID will resume own navigation after takeoff while non-RNAV departures will receive radar vectors to intercept an airway/radial/track/fix or join a SID. If a pilot requests a route that starts outside of the Point-a-Pitre TMA, it shall be coordinated with the adjacent facility or area control center.

Phraseology example:

*TFFR\_APP: AFR841, Raizet approach, identified passing 3000ft, resume the BOSET1F departure, climb FL240.*
#### **5-5 ARRIVALS**

For connecting flights between TFFF & TFFR it is required for pilots to comply with a LIDOS RNAV1 STAR and requested flight level in their flight plan should be an EVEN level.

RNAV1 STARs are preferential. All non-RNAV arrivals will be provided with radar vectors as necessary or cleared to one of the Initial Approach Fixes (IAF) or Intermediate Fix (IF).

| LE RAIZET RNAV STARS (1A/ S/ Z) |                         |           |                            |                                     |
|---------------------------------|-------------------------|-----------|----------------------------|-------------------------------------|
| RUNWAY                          | STAR                    | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |
|                                 |                         | B         | IMBO                       |                                     |
|                                 | BIMB1A                  |           | AVSET                      | RNP Y RWY12                         |
|                                 | BIMB1Z                  | NW        | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                 |                         | В         | OSET                       |                                     |
|                                 | BOSE1A                  |           | AVSET                      | RNP Y RWY12                         |
|                                 | BOSE1S                  | NE        | DESTO                      | RNPZ/RNPY/ILSZ<br>RWY12             |
|                                 | BOSE1Z                  |           | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                 |                         | DOM       |                            |                                     |
| 12                              | DOM1S                   | S         | DESTO                      | RNPZ/RNPY/ILSZ<br>RWY12             |
|                                 | DOM1Z                   |           | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                 |                         | G         | ORET                       |                                     |
|                                 | GORE1A                  |           | AVSET                      | RNP Y RWY12                         |
|                                 | GORE1Z                  | W, NW     | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                 |                         |           | LURI                       |                                     |
|                                 | ILUR1Z                  | W         | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                 | CONTINUED ON NEXT PAGE. |           |                            |                                     |

| LE RAIZET RNAV STARS PT.2 (1A/ S/ Z) |        |           |                            |                                     |
|--------------------------------------|--------|-----------|----------------------------|-------------------------------------|
| RUNWAY                               | STAR   | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |
|                                      |        | K         | <b>KASKI</b>               |                                     |
|                                      | KASK1A |           | AVSET                      | RNP Y RWY12                         |
|                                      | KASK1Z | NW        | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                      |        | L         | IDOS                       |                                     |
|                                      | LID01S | SSE       | DESTO                      | RNPZ/RNPY/ILSZ<br>RWY12             |
| 12                                   | LID01Z | 5, 5L     | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                      |        | T.        | ASAR                       |                                     |
|                                      | TASA1S | QE        | DESTO                      | RNPZ/RNPY/ILSZ<br>RWY12             |
|                                      | TASA1Z | 5         | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
|                                      |        | т         | ULEX                       | -                                   |
|                                      | TULE1Z | SW        | RIDIN                      | ILSZ/RNPZ<br>RWY12                  |
| LE RAIZET RNAV STARS PT.3 (1G/ L/ U) |        |           |                            |                                     |
|                                      |        | В         | IMBO                       |                                     |
|                                      | BIMB1L | NW        | LOMPA                      | RNP RWY30                           |
|                                      | BIMB1U |           | DULBO                      | RNP RWY30                           |
|                                      |        | В         | OSET                       |                                     |
|                                      | BOSE1L | NE        | LOMPA                      | RNP RWY30                           |
|                                      | BOSE1U |           | DULBO                      | RNP RWY30                           |
| 30                                   | DOM    |           |                            |                                     |
|                                      | DOM1G  | s         | GONES                      | RNP RWY30                           |
|                                      | DOM1L  |           | LOMPA                      | RNP RWY30                           |
|                                      |        | G         | ORET                       |                                     |
|                                      | GORE1L | W, NW     | LOMPA                      | RNP RWY30                           |
|                                      | GORE1U | ,         | DULBO                      | RNP RWY30                           |
|                                      |        | CONTINUED | ON NEXT PAG                | iE.                                 |

| LE RAIZET RNAV STARS PT.4 (1G/ L/ U) |        |           |                            |                                     |  |
|--------------------------------------|--------|-----------|----------------------------|-------------------------------------|--|
| RUNWAY                               | STAR   | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |  |
|                                      |        | ILU       | JRI                        |                                     |  |
|                                      | ILUR1L | \M/       | LOMPA                      | RNP RWY30                           |  |
|                                      | ILUR1U | ¥ ¥       | DULBO                      | RNP RWY30                           |  |
|                                      |        | KA        | SKI                        | 1                                   |  |
|                                      | KASK1L | NW        | LOMPA                      | RNP RWY30                           |  |
|                                      | KASK1U |           | DULBO                      | RNP RWY30                           |  |
| 20                                   |        | LID       | OS                         |                                     |  |
| 30                                   | LIDO1G | C CE      | GONES                      | RNP RWY30                           |  |
|                                      | LID01L | 3, 3E     | LOMPA                      | RNP RWY30                           |  |
|                                      |        | TUI       | LEX                        |                                     |  |
|                                      | TULE1G | SW GONES  | GONES                      | RNP RWY30                           |  |
|                                      | TULE1L |           | LOMPA                      | RNP RWY30                           |  |
|                                      | TASAR  |           |                            |                                     |  |
|                                      | TASA1L | SE        | LOMPA                      | RNP RWY30                           |  |
| LE RAIZET CONVENTIONAL STARS (5K)    |        |           |                            |                                     |  |
|                                      |        | BIN       | IBO                        |                                     |  |
|                                      | BIMB5K | NW        | KEDAK                      | ILSY RWY12                          |  |
|                                      | BOSET  |           |                            |                                     |  |
|                                      | BOSE5K | NE        | KEDAK                      | ILSY RWY12                          |  |
|                                      | DOM    |           |                            |                                     |  |
|                                      | DOM5K  | S         | PPR                        | ILSY RWY12                          |  |
|                                      | GORET  |           |                            |                                     |  |
| ALL                                  | GORE5K | W, NW     | KEDAK                      | ILSY RWY12                          |  |
|                                      |        | KA        | SKI                        |                                     |  |
|                                      | KASK5K | NW        | KEDAK                      | ILSY RWY12                          |  |
|                                      |        | LID       | OS                         |                                     |  |
|                                      | LIDO5K | S, SE     | PPR                        | ILSY RWY12                          |  |
|                                      |        | TUI       | LEX                        | •<br>                               |  |
|                                      | TULE5K | SW        | KEDAK                      | ILSY RWY12                          |  |

|        | LE RAIZET CONVENTIONAL STARS PT.2 (5P/ M) |           |                            |                                     |  |
|--------|-------------------------------------------|-----------|----------------------------|-------------------------------------|--|
| RUNWAY | STAR                                      | DIRECTION | INITIAL<br>APPROACH<br>FIX | INSTRUMENT<br>APPROACH<br>PROCEDURE |  |
|        |                                           | BIN       | IBO                        |                                     |  |
|        | BIMB5P                                    | NW        | PPR                        | ILSY/VOR<br>RWY12/ VOR<br>RWY30     |  |
|        |                                           | BO        | SET                        |                                     |  |
|        | BOSE5P                                    | NE        | PPR                        | ILSY/VOR<br>RWY12/ VOR<br>RWY30     |  |
|        |                                           | DC        | MC                         |                                     |  |
|        | DOM5P                                     | S         | PPR                        | ILSY/VOR<br>RWY12/ VOR<br>RWY30     |  |
|        |                                           | GO        | RET                        | I                                   |  |
| ALL    | GORE5P                                    | W, NW     | PPR                        | ILSY/VOR<br>RWY12/ VOR<br>RWY30     |  |
|        | KASKI                                     |           |                            |                                     |  |
|        | KASK5P                                    | NW        | PPR                        | ILSY/VOR<br>RWY12/ VOR<br>RWY30     |  |
|        |                                           | LID       | OS                         | 1                                   |  |
|        | LIDO5P                                    | S, SE     | PPR                        | ILSY/VOR<br>RWY12/ VOR<br>RWY30     |  |
|        |                                           | TUI       | LEX                        |                                     |  |
|        | TULE5M                                    |           | MUNSI                      | ILSY RWY12                          |  |
|        | TULE5P                                    | SW        | PPR                        | ILSY/VOR<br>RWY12/ VOR<br>RWY30     |  |

#### **5-6 VFR REPORTING POINTS**



**Visual Approach:** 



#### 5-6 VFR REPORTING POINTS PT. 2

| POINT            | DIRECTION/ ID |
|------------------|---------------|
| PORT LOUIS       | Ν             |
| VIEUX BOURG      | NA            |
| LE MOULE         | NE            |
| IIETT FAJOU      | NW            |
| ANSE À LA BARQUE | ш             |
| CHAZEAU          | EA            |
| CAPESTERRRE      | S             |
| JARRY            | SA            |
| -                | SE            |
| IIET GOSIER      | SEA           |

No Aerodrome control service provided at the following airports in Point-a-Pitre TMA (Uncontrolled):

- TFFA La Désirade Airport
- **TFFB Baillif Airport**
- **TFFC Saint Francois Airport**
- **TFFM Marie Galante Airport**
- **TFFS Les Saintes Airport**

#### **5-7 DOMINICA TRAFFIC**

| AERODROME TRAFFIC ZONES      |                |                   |                  |                  |
|------------------------------|----------------|-------------------|------------------|------------------|
| AERODROME                    | CLASSIFICATION | VERTICAL<br>LIMIT | LATERAL<br>LIMIT | TWR<br>FREQUENCY |
| DOUGLAS<br>CHARLES<br>(TDPD) | G              | 2000 FT AAL       | 2 NM             | 118.900          |
| CANEFIELD<br>(TDCF)          |                |                   |                  | 118.700          |

Aircraft departing TDPD & TDCF that will climb to a cruise altitude above 3000ft shall contact Raizet Approach if direction of flight is Northbound or Martinique Approach if Southbound.

#### **Douglas Charles (TDPD):**

| RNAV SID |        |  |
|----------|--------|--|
| RUNWAY   | SID    |  |
| 09       | KAROT1 |  |

Take-off on RWY 27 prohibited.

Take-off and landing of aircraft on all runways during the day and at night time are limited to operations in Visual Meteorological Conditions (VMC) only.

| VISUAL APPROACH MINIMUMS (IFR) |                   |                       |  |
|--------------------------------|-------------------|-----------------------|--|
| RUNWAY CEILING VISIBILITY      |                   |                       |  |
| ALL                            | 1500 FT OR HIGHER | <b>5KM OR GREATER</b> |  |

The landing of aircraft on RWY 27 at night is not approved when the tailwind component exceeds 10 knots.

RNAV Approaches: Pilots of IFR aircraft landing at Douglas Charles who intend to conduct an RNAV/ GNSS RWY 27 procedure shall advise Le Raizet APP or Martiniqe APP either prior to reaching FOF or PPR or before departing TFFF or TFFR. The pilot shall inform APP of the appropriate IAF (ADVUR, VOLAB, IGROP) to which they request to be cleared.

NDB (DME) Approaches: Pilots of IFR aircraft landing at Douglas Charles will be cleared by Le Raizet APP or Martinique APP to proceed to IAF NOSAM in order to conduct a NDB RWY 27 procedure as the default clearance. Pilots may request to proceed to IAF SEDOG or ULOMA either prior to reaching FOF or PPR or before departing TFFF or TFFR.

For aircraft that are unable to conduct RNAV RWY 27 approach, Le Raizet RAPCO will provide an ATC clearance to fly to NOSAM, either by aircraft's own navigation or by providing radar vectoring, and to descend to 3000 ft. Below this altitude the pilot may continue IFR on a visual approach in uncontrolled airspace at pilot's discretion, or the pilot may cancel IFR and continue VFR.



## MINOR TMA (PROCEDURAL) STANDARD OPERATING PROCEDURES

This document is to be used for Virtual Air Traffic Simulation purposes only.

## **TABLE OF CONTENT**

#### **CHAPTER 1: V.C. BIRD TMA**

1-1 AERODROME SPECIFICATIONS
1-2 OPERATIONAL POSITIONS
1-3 VFR DEPARTURES
1-4 GROUND MOVEMENT
1-5 AERODROME CONTROL
1-6 NOISE ABATEMENT

- 1-7 VFR HOLDING POSITIONS
- 1-8 V.C BIRD APPROACH

#### **CHAPTER 2: BRADSHAW CTR**

2-1 AERODROME SPECIFICATIONS
2-2 OPERATIONAL POSITIONS
2-3 STANDARD INSTRUMENT DEPARTURES
2-4 GROUND DIAGRAMS
2-5 AERODROME CONTROL
2-6 TKPK TRAFFIC
2-7 TKPN TRAFFIC
2-8 BRADSHAW APPROACH

#### **CHAPTER 3: ARGYLE TMA**

3-1 AERODROME SPECIFICATIONS
3-2 OPERATIONAL POSITIONS
3-3 STANDARD INSTRUMENT DEPARTURES
3-4 GROUND DIAGRAMS
3-5 AERODROME CONTROL
3-6 ARGYLE APPROACH

#### **CHAPTER 4: MAURICE BISHOP TMA**

4-1 AERODROME SPECIFICATIONS
4-2 OPERATIONAL POSITIONS
4-3 GROUND DIAGRAMS
4-4 AERODROME CONTROL
4-5 MAURICE BISHOP APPROACH

## CHAPTER 1: V.C BIRD TMA

## 1-1 V.C BIRD AERODROME SPECIFICATIONS

| AIRSPACE (CTR)      | CLASS E            |  |
|---------------------|--------------------|--|
| ELEVATION           | 58 FT              |  |
| LATERAL DIMENSION   | 20 NM              |  |
| VERTICAL DIMENSION  | SFC – 3000 FT AMSL |  |
| PATTERN ALTITUDE    | 1000 FT AGL        |  |
| TRANSITION ALTITUDE | 2500 FT AGL        |  |
| STANDARD FLOW       | EAST               |  |

## **1-2 OPERATIONAL POSITIONS**

| POSITION  | IDENTIFIER        | FREQUENCY |
|-----------|-------------------|-----------|
| TAPA_GND  | V C BIRD GROUND   | 121.900   |
| TAPA_TWR  | V C BIRD TOWER    | 118.200   |
| TAPA_APP  | V C BIRD APPROACH | 119.100   |
| TAPA_ATIS | ATIS              | 132.400   |

#### **1-3 VFR DEPARTURES**

Flights operating within the V.C Bird CTR in accordance with Visual Flight Rules are initially restricted to a maximum of 2000ft AMSL.

#### **1-4 GROUND MOVEMENT**

Taxiway A is restricted to aircraft with max take-off weight of 65,000lbs (29,484kg) or less, and wing span of 100' (30m) or less. (ERJ, CRJ, ATR, General Aviation etc.)

#### **Ground Diagram:**



Parking Gates:



#### **1-5 AERODROME CONTROL**

V.C Bird tower is responsible for the active runways and traffic operating within V.C Bird Control Zone. Despite the CTR vertical limits being 3000ft, tower is responsible for flights from SFC to FL040.

V.C Bird CTR lateral limits is represented by the dashed magenta lines in the image below.



Image Source: SkyVector

#### **1-6 NOISE ABATEMENT**

**All aircraft departing RWY07** will climb to 500 ft after take-off and immediately initiate a left or right turn, depending upon destination, at a bank angle of at least 15 degrees in order to avoid passage directly over Long Island.

**Aircraft proceeding on a northerly track** should initially maintain a heading not more easterly than 027 degrees until north of a bearing of 072 degrees from the 'ZDX' NDB.

Aircraft proceeding on a southerly track may continue with course intercept provided the requirement for 'all aircraft departing RWY07' has been achieved.

#### **1-7 VFR HOLDING POSITIONS**

In order to avoid conflicts with aircraft within V.C Bird traffic circuit, the following positions are established for the holding of VFR aircraft during periods of congestion:

| DIRECTION OF<br>APPROACH | HOLDING<br>POSITION          | RUNWAY IN<br>USE | VOR/DME<br>FIX |
|--------------------------|------------------------------|------------------|----------------|
| NORTH, WEST              | PRICKLY PEAR<br>ISLAND COAST | 07/25            | 310ANU3.0      |
| SOUTH,<br>SOUTHWEST      | POTWORKS DAM                 | 07               | 157ANU4.0      |
| SOUTH,<br>SOUTHWEST      | PELICAN ISLAND               | 25               | 120ANU5.5      |

#### **1-8 V.C BIRD APPROACH**

V.C Bird Approach (TAPA\_APP) is responsible for providing ATC services to aircraft operating in the V.C Bird TMA.

The transfer of control point between the approach and center controllers will be (departures) reaching FL240 and/or at the lateral boundaries of the TMA or (arrivals) reaching FL250 and/or at the lateral boundaries of V.C Bird TMA.

See TTZP-ZSU Letter of Agreement for TCP with San Juan CERAP.

| V.C BIRD TERMINAL CONTROL AREA |          |  |
|--------------------------------|----------|--|
| VERTICAL LIMIT                 | AIRSPACE |  |
| 3000ft – FL195                 | CLASS E  |  |
| FL195 – FL245                  | CLASS A  |  |



**Airspace Dimensions:** 

## **CHAPTER 2: BRADSHAW CTR**

## 2-1 AERODROME SPECIFICATIONS: ROBERT L. BRADSHAW (TKPK)

| AIRSPACE (ATZ)      | CLASS E           |  |
|---------------------|-------------------|--|
| ELEVATION           | 168 FT            |  |
| LATERAL DIMENSION   | 2.5 NM            |  |
| VERTICAL DIMENSION  | SFC – 2000 FT AAL |  |
| PATTERN ALTITUDE    | 1500 FT AGL       |  |
| TRANSITION ALTITUDE | 5000 FT AGL       |  |
| STANDARD FLOW       | EAST              |  |

## VANCE W. AMORY (TKPN):

| AIRSPACE (ATZ)      | CLASS D           |  |
|---------------------|-------------------|--|
| ELEVATION           | 25 FT             |  |
| LATERAL DIMENSION   | 1.5 NM            |  |
| VERTICAL DIMENSION  | SFC – 2000 FT AAL |  |
| PATTERN ALTITUDE    | 1000 FT AGL       |  |
| TRANSITION ALTITUDE | 5000 FT AGL       |  |
| STANDARD FLOW       | EAST              |  |

## **2-2 OPERATIONAL POSITIONS**

| POSITION | IDENTIFIER           | FREQUENCY |
|----------|----------------------|-----------|
| TKPK_GND | BRADSHAW GROUND      | 121.900   |
| TKPN_GND | AMORY GROUND         | 121.600   |
| TKPK_TWR | BRADSHAW TOWER       | 118.300   |
| TKPN_TWR | AMORY TOWER          | 120.500   |
| TKPK_APP | BRADSHAW<br>APPROACH | 119.600   |

## 2-3 STANDARD INSTRUMENT DEPARTURES

| ТКРК   |            |                                                      |
|--------|------------|------------------------------------------------------|
| RUNWAY | SID (RNAV) | TRANSITIONS<br>& DIRECTION OF FLIGHT                 |
| 07     | KIPUR1     | ANASU – SE<br>BOMET – SE<br>ELOPO – NE<br>ZPATA – NW |
| 07     | UDGEL1     | GABAR – NW                                           |
| 25     | DUSUL1     | ANASU – SE<br>ANU – E<br>GABAR – NW<br>ZPATA – NW    |
| TKPN   |            |                                                      |
| 07     | OVISA1     | ANASU – SE<br>BOMET – SE<br>GABAR – NW<br>ZPATA – NW |

2-4 GROUND DIAGRAMS

TKPK:



**TKPN:** 



#### 2-5 AERODROME CONTROL

Bradshaw tower is responsible for the active runways and traffic operating within the Robert L. Bradshaw ATZ.

Amory tower is responsible for active runways and traffic operating within the Vance W. Amory ATZ.

#### 2-6 TKPK TRAFFIC

RWY07 right hand circuit pattern is preferred due to rapidly rising terrain Northwest through East of the aerodrome.

All aircraft shall maintain at least 1500 feet over towns and built-up areas.

#### 2-7 TKPN TRAFFIC

Caution: Hurricane hill located west of RWY10 displaced threshold and rapidly rising terrain south of the runway.

RWY28 right hand circuit pattern is preferred. (Day-time use only)

#### 2-8 BRADSHAW APPROACH

Bradshaw Approach (TKPK\_APP) is responsible for providing ATC services to aircraft operating in the Bradshaw Control Zone.

The transfer of control point between Bradshaw approach and V.C Bird approach will be reaching FL065 and/or at the lateral boundaries of the Control Zone.

See TTZP-ZSU Letter of Agreement for TCP with San Juan CERAP.

#### 2-8 BRADSHAW APPROACH PT.2

| BRADSHAW CONTROL ZONE |                |  |
|-----------------------|----------------|--|
| AIRSPACE              | VERTICAL LIMIT |  |
| CLASS E               | SFC – FL065    |  |

Airspace Dimensions:



## **CHAPTER 3: ARGYLE TMA**

## 3-1 AERODROME SPECIFICATIONS – ARGYLE (TVSA)

| AIRSPACE (ATZ)      | CLASS D     |  |
|---------------------|-------------|--|
| ELEVATION           | 136 FT      |  |
| LATERAL DIMENSION   | 2 NM        |  |
| VERTICAL DIMENSION  | 2000 FT AAL |  |
| PATTERN ALTITUDE    | 1000 FT AAL |  |
| TRANSITION ALTITUDE | 5200 FT     |  |
| STANDARD FLOW       | NORTH       |  |

J.F MITCHELL (TVSB)

| AIRSPACE (ATZ)      | CLASS G     |  |
|---------------------|-------------|--|
| ELEVATION           | 15 FT       |  |
| LATERAL DIMENSION   | 2 NM        |  |
| VERTICAL DIMENSION  | 2000 FT AAL |  |
| PATTERN ALTITUDE    | 1000 FT AAL |  |
| TRANSITION ALTITUDE | 4200 FT     |  |
| STANDARD FLOW       | EAST        |  |

## CANOUAN (TVSC)

| AIRSPACE (ATZ)      | CLASS G     |  |
|---------------------|-------------|--|
| ELEVATION           | 16 FT       |  |
| LATERAL DIMENSION   | 2 NM        |  |
| VERTICAL DIMENSION  | 2000 FT AAL |  |
| PATTERN ALTITUDE    | 1000 FT AAL |  |
| TRANSITION ALTITUDE | 4200 FT     |  |
| STANDARD FLOW       | EAST        |  |

## UNION ISLAND (TVSU)

| AIRSPACE (ATZ)      | CLASS G     |  |
|---------------------|-------------|--|
| ELEVATION           | 16 FT       |  |
| LATERAL DIMENSION   | 2 NM        |  |
| VERTICAL DIMENSION  | 2000 FT AAL |  |
| PATTERN ALTITUDE    | 1000 FT AAL |  |
| TRANSITION ALTITUDE | 4200 FT     |  |
| STANDARD FLOW       | EAST        |  |

## MUSTIQUE (TVSM) – UNCONTROLLED

| AIRSPACE (ATZ)      | CLASS G     |  |
|---------------------|-------------|--|
| ELEVATION           | 9 FT        |  |
| LATERAL DIMENSION   | 2 NM        |  |
| VERTICAL DIMENSION  | 2000 FT AAL |  |
| PATTERN ALTITUDE    | 1000 FT AAL |  |
| TRANSITION ALTITUDE | 4200 FT     |  |
| STANDARD FLOW       | EAST        |  |

## **3-2 OPERATIONAL POSITIONS**

| POSITION  | IDENTIFIER         | FREQUENCY |
|-----------|--------------------|-----------|
| TVSA_GND  | ARGYLE GROUND      | 121.900   |
| TVSC_GND  | CANOUAN GROUND     | 121.600   |
| TVSA_TWR  | ARGYLE TOWER       | 118.800   |
| TVSC_TWR  | CANOUAN TOWER      | 118.050   |
| TVSB_TWR  | J.F MITCHELL TOWER | 118.450   |
| TVSU_TWR  | UNION ISLAND TOWER | 122.800   |
| TVSA_APP  | ARGYLE APPROACH    | 120.800   |
| TVSA_ATIS | ATIS               | 132.550   |

## **3-3 STANDARD INSTRUMENT DEPARTURES**

| ARGYLE RNAV SIDS |        |           |
|------------------|--------|-----------|
| RUNWAY           | SID    | DIRECTION |
|                  | BNEPL  | NE        |
|                  | GOTER  | Е         |
| 22               | LENAL  | W         |
|                  | LIDOG  | NW        |
|                  | RESAS  | SW        |
|                  |        |           |
| 04               | BNEP1A | NE        |
|                  | GOTE1A | Ш         |
|                  | LENA1A | W         |
|                  | LID01A | NW        |
|                  | RESA1A | SW        |

**3-4 GROUND DIAGRAM** 

TVSA:





#### **3-5 AERODROME CONTROL**

Argyle tower is responsible for the active runways and traffic operating within the Argyle ATZ.

J.F Mitchell tower is responsible for active runways and traffic operating within the J.F Mitchell ATZ.

Canouan tower is responsible for active runways and traffic operating within the Canouan ATZ.

Union Island tower is responsible for active runways and traffic operating within the Union Island ATZ.

No Aerodrome control service is provided in Mustique ATZ.

Due to high terrain at TVSA, circling to land WEST of RWY is not authorized. Right hand traffic pattern for RWY 04 & left-hand traffic pattern for RWY 22 is preferred.

#### **3-6 ARGYLE APPROACH**

Argyle Approach (TVSA\_APP) is responsible for providing ATC services to aircraft operating in the Argyle CTR & TMA.

The transfer of control point between the approach and center controllers will be (departures) reaching FL130 and/or at the lateral boundaries of the TMA or (arrivals) reaching FL140 and/or at the lateral boundaries of Argyle TMA.

Aircraft departing and arriving at airports in the Grenadines islands shall maintain two radio communication with Argyle APP.

Minimum descent altitude for the island of St. Vincent is 5200 ft in the north, and 4200 ft in the south.

Minimum descent altitude over southern Grenadine Islands is 2700 ft.

#### **3-6 ARGYLE APPROACH PT.2**

| ARGYLE CONTROL ZONE          |                |  |  |
|------------------------------|----------------|--|--|
| AIRSPACE                     | VERTICAL LIMIT |  |  |
| CLASS D                      | SFC – FL055    |  |  |
| ARGYLE TERMINAL CONTROL AREA |                |  |  |
| CLASS D                      | FL055 – FL135  |  |  |

Airspace Dimensions:



## **CHAPTER 4: MAURICE BISHOP TMA**

4-1 AERODROME SPECIFICATIONS – MAURICE BISHOP (TGPY)

| AIRSPACE (CTR)      | CLASS E     |  |
|---------------------|-------------|--|
| ELEVATION           | 45 FT       |  |
| LATERAL DIMENSION   | 30 NM       |  |
| VERTICAL DIMENSION  | SFC – FL055 |  |
| PATTERN ALTITUDE    | 1000 FT AGL |  |
| TRANSITION ALTITUDE | 4000 FT     |  |
| STANDARD FLOW       | EAST        |  |

#### **4-2 OPERATIONAL POSITIONS**

| POSITION | IDENTIFIER                 | FREQUENCY |
|----------|----------------------------|-----------|
| TGPY_GND | MAURICE BISHOP<br>GROUND   | 121.900   |
| TGPY_TWR | MAURICE BISHOP<br>TOWER    | 118.900   |
| TGPY_APP | MAURICE BISHOP<br>APPROACH | 119.400   |

#### **4-3 GROUND DIAGRAM**

TGPY:



#### **4-4 AERODROME CONTROL**

Maurice Bishop tower is responsible for the active runways and traffic operating within the Maurice Bishop CTR.

Departure Procedures:

RWY10 Northbound aircraft shall visually climb on RWY heading to 400 ft, turn right track 120 degrees GND to 2800 ft then on course to track between segments 276 and 095 degrees clockwise.

RWY10 Southbound aircraft shall visually climb on RWY heading to 400 ft, turn right on course to track between segments 096 to 275 degrees clockwise.

Circle to land authorized south of extended centerline RWY10 only.

#### 4-5 MAURICE BISHOP APPROACH

Maurice Bishop Approach (TGPY\_APP) is responsible for providing ATC services to aircraft operating in the Maurice Bishop CTR & TMA.

The transfer of control point between the approach and center controllers will be (departures) reaching FL130 and/or at the lateral boundaries of the TMA or (arrivals) reaching FL140 and/or at the lateral boundaries of Argyle TMA.

No aerodrome control service provided at Lauriston airport (TGPZ).

#### 4-5 MAURICE BISHOP APPROACH PT.2

| MAURICE BISHOP CONTROL ZONE          |                 |  |  |
|--------------------------------------|-----------------|--|--|
| AIRSPACE                             | VERTICAL LIMIT  |  |  |
| CLASS E                              | SFC – FL055     |  |  |
| MAURICE BISHOP TERMINAL CONTROL AREA |                 |  |  |
| CLASS E                              | 3000 FT – FL135 |  |  |

## **Airspace Dimensions**





# PIARCO CENTRE STANDARD OPERATING PROCEDURES

This document has been distributed for Virtual Air Traffic Simulation purposes only.

## **TABLE OF CONTENT**

#### **CHAPTER 1: GENERAL INFORMATION**

1-1 OPERATIONAL POSITIONS 1-2 BEACON CODES

#### **CHAPTER 2: CONTROL AREA**

2-1 AIRSPACE 2-2 TRANSFER OF CONTROL

#### **CHAPTER 3: OCEANIC PROCEDURES**

3-1 OVERVIEW3-2 OCEANIC CLEARANCE3-3 OCEANIC SECTOR

#### **CHAPTER 4: SEPARATION OF AIRCRAFT**

4-1 VERTICAL SEPARATION MINIMA4-2 LATERAL SEPARATION MINIMA4-3 LONGITUDINAL SEPARATION MINIMA

#### **CHAPTER 5: COORDINATION**

5-1 ADJACENT TMAs 5-2 ADJACENT FIRs

## **CHAPTER 1: GENERAL INFORMATION**

## **1-1 OPERATIONAL POSITIONS**

| POSITION                     | IDENTIFIER     | FREQUENCY |
|------------------------------|----------------|-----------|
| TTZP_CTR*<br>(COMBINED)      | PIARCO RADAR   |           |
| TTZP_N_CTR<br>(NORTH SECTOR) | PIARCO RADAR   | 123.700   |
| TTZP_S_CTR<br>(SOUTH SECTOR) | PIARCO RADAR   | 125.400   |
| TTZP_E_CTR<br>(EAST SECTOR)  | PIARCO RADAR   | 124.000   |
| TTZP_W_CTR<br>(WEST SECTOR)  | PIARCO RADAR   | 133.100   |
| TTZO_FSS                     | PIARCO OCEANIC | 126.500   |

## **1-2 BEACON CODES**

| NORTH SECTOR | 3001 – 3077 |
|--------------|-------------|
| SOUTH SECTOR | 6001 - 6077 |
# CHAPTER 2: CONTROL AREA

#### 2-1 AIRSPACE

Vertical Specifications:

| TTZP CTA (EXCLUDES ALL TMAS) |               |  |
|------------------------------|---------------|--|
| LOWER FIR – CLASS G          | SFC – FL055   |  |
| LOWER CONTROL AREA – CLASS E | FL055 – FL195 |  |
| LOWER CONTROL AREA – CLASS A | FL195 – FL245 |  |
| UPPER CONTROL AREA – CLASS A | FL245 – UNL   |  |

#### Lateral Specifications:

Piarco FIR is split into 6 different sectors:

- N North Sector
- NE North East Sector
- NW North West Sector
- SE South East Sector
- SW South West Sector
- EO Eastern Oceanic Sector

Traffic levels within the FIR lack the density to simulate the full use of all sectors. In case the FIR becomes congested controllers may split the Area control into five (5) sectors. (North/ South/ East/ West/ Oceanic) Piarco Radar/ Continental Sector:







### 2-2 TRANSFER OF CONTROL

The transfer of control point between Piarco center and adjacent facilities will be upon aircraft reaching the vertical and lateral boundaries of the TMA/FIR.

When an aircraft is being transferred from one ATS authority to another, notify the aircraft that their ATC/radar services are terminated.

### **Terminal Control Area:**

Piarco TMA – Departures FL150 & Arrivals FL160

Adams TMA – Departures FL240 & Arrivals FL250

Martinique TMA – Departures FL240 & Arrivals FL250

Point a Pitre TMA – Departures FL240 & Arrivals FL250

V.C Bird TMA – Departures FL240 & Arrivals FL250

Argyle TMA – Departures FL130 & Arrivals FL140

Maurice Bishop TMA – Departures FL130 & Arrivals FL140

# Adjacent FIRs:

KZWY – New York OCA

SVZM – Maiquetia FIR

SYGC – Georgetown FIR

TJZS – San Juan CERAP

### **CHAPTER 3: SEPARATION OF AIRCRAFT**

### **3-1 VERTICAL SEPARATION MINIMA**

Below FL410 - 1000 ft

Above FL410 - 2000 ft

### **3-2 LATERAL SEPARATION MINIMA**

Minimum lateral separation shall be 100 nm between aircraft in the Piarco FIR continental sector & 120 nm between aircraft in the Piarco FIR oceanic sector except the lower minima in Doc. 4444 PANS/ATM (Ch. 5.4) may be applied or further reduced separation where the conditions specified in Ch 5.11 are met.

The lower minima for separation between aircraft within the continental sector is 10–15 NM.

The separation minima between overflights on RNAV5 routes shall be 30 NM lateral spacing.

Where radar is the means of confirming initial aircraft positions and track will diverge until other lateral separation is achieved, additional track separation criteria shall be:

| DISTANCE BETWEEN TRACKS | MINIMUM DEGREE DIVERGENCE |
|-------------------------|---------------------------|
| 5 NM                    | 30°                       |
| 10 NM                   | 20°                       |
| 15 NM                   | 15°                       |
| 20 NM                   | 10°                       |

### **3-3 LONGITUDINAL SEPARATION MINIMA**

Minimum longitudinal separation shall be 15 minutes between aircraft operating below FL200 in the Piarco FIR continental sector and between aircraft operating at all levels in the Piarco FIR oceanic sector.

#### **CHAPTER 4: OCEANIC PROCEDURES**

#### **4-1 OVERVIEW**

IFR flights entering oceanic airspace are subject to an oceanic clearance and shall provide position reports upon crossing each waypoint during their oceanic route.

Aircraft exiting the Piarco FIR to enter the New York OCA shall request/receive an oceanic clearance from Piarco radar at least 30 minutes prior to reaching the TTZP/KZWY boundary.

### **4-2 OCEANIC CLEARANCE**

Oceanic clearances shall be given in the following format:

[CLEARANCE LIMIT] [ROUTE] [FLIGHT LEVEL] [MACH #]

Phraseology example:

FWI43M: Piarco radar, FWI43M passing FL190 for FL370.

TTZP\_CTR: FWI43M, Piarco, radar contact, continue climb FL370 and copy oceanic clearance.

FWI43M: Ready to Copy.

TTZP\_CTR: Piarco control clears FWI43M to LFPO via BNJEE 27N055W 34N050W 38N045W 41N040W 43N035W 44N030W 47N020W 48N010W ETIKI then as filed, maintain FL370, mach 0.80.

FWI43M: [Reads back clearance]

TTZP\_CTR: FWI43M, readback correct, say estimated time to cross BNJEE.

FWI43M: Estimating BNJEE at 0230Z.

TTZP\_CTR: FWI43M, roger.

### **4-3 OCEANIC SECTOR**



### **Communications:**

**ADS-C (Automatic Dependent Surveillance – Contract)** uses systems on board the aircraft to automatically transmit information such as the aircraft's position, altitude, speed, navigational intent & meteorological data which can be sent to one or more specific ATS unit for surveillance and/or route conformance monitoring. ADS-C is used as the primary means of position reporting in Piarco oceanic airspace. All aircraft flying on VATSIM continuously send aircraft position, altitude, and speed data to VATSIM servers which are available to the controller in the ATC client. ADS-C is simulated by using the "assume" function of the Euroscope client.

**CPDLC (Controller Pilot Data Link Communication)** is a two-way data link system by which controllers can transmit messages to an aircraft as an alternative to voice communications. The message is displayed on a flight deck visual display. CPDLC can be simulated via the on-frequency text chat. Piarco FIR does not currently use any alternative software to simulate CPDLC or ADS-C on VATSIM.

Due to limitations of the Euroscope client we are only able to display a VHF primary frequency.

# **Performance Based Separation Minima:**

The following separation minima may be used for aircraft cruising, climbing or descending on the same track or crossing tracks provided that the relative angle between the tracks is less than 90 degrees.

| SEPARATION MINIMA | REQUIRED<br>NAVIGATION<br>PERFORMANCE | MAX ADS-C<br>REPORTING<br>INTERVAL |
|-------------------|---------------------------------------|------------------------------------|
| 50 NM             | RNP 10                                | 27 MINUTES                         |
|                   | RNP 4                                 | 32 MINUTES                         |
| 30 NM             | RNP 2 OR 4                            | 12 MINUTES                         |
| 5 MINUTES         | RNP 2, 4, OR 10                       | 14 MINUTES                         |



RNAV 10 will enable a reduction from 100nm to 50nm lateral separation (short term)

Longitudinal separation shall be:

Fifteen (15) minutes , or The application of Mach number technique based on time. (ICAO DOC 4444 Section 5.4.2.4).



**RNP 4** WILL ENABLE A REDUCTION FROM **50NM TO 30NM** LATERAL SEPARATION and **30NM** LONGITUDINAL SEPARATION MINIMA

**Position Reports:** 

Pilots shall make position reports using the following format:

[LAST FIX CROSSED] at [TIME CROSSED], [ALTITUDE], [MACH#], estimating [NEXT FIX] at [TIME], [NEXT FIX] thereafter.

Phraseology example:

KLM713: Piarco, KLM713 position.

TTZO\_FSS: KLM713, pass your message.

KLM713: 16N050W at 2020Z, FL400, mach .78, estimating 090N054W at 2100Z, TODOL thereafter.

TTZO\_FSS: KLM713, [Reads back position report].

Adjacent FIRs:

GOOO – Dakar Oceanic UIR

GVSC – Sal Oceanic FIR

KZWY – New York OCA

LPPO – Santa Maria OCA

SMPM – Paramaribo FIR

SOOO – Cayenne FIR

#### **CHAPTER 5: COORDINATION**

#### **5-1 ADJACENT TMAs**

For all aircraft departing an airport within the Piarco FIR requesting a final cruising altitude above FL245, the controller providing clearance delivery shall coordinate with Piarco Area Control Centre for push & start and flight level approval.

For aircraft arriving at an airport where radar approach surveillance is provided, the centre controller shall use the 'transfer' function on their ATC client at the prescribed transfer of control point (2-2).

Aircraft arriving at an airport where procedural approach control is provided, Piarco Area Control Centre shall coordinate the pilot's distance, inbound radial, time to cross the TMA boundary/fix & flight level via text chat or discord call and handoff via voice on frequency.

Example 1:

TAPA\_GND: Piarco radar, Bird.

TTZP\_CTR: Bird, Piarco radar.

TAPA\_GND: BAW2157 destination Piarco Int'l via UL205, requesting FL350.

TTZP\_CTR: FL350 is approved.

TAPA\_GND: copy, thanks.

Example 2:

TTZP\_CTR: Argyle, Piarco radar.

TVSA\_APP: Piarco, Argyle.

TTZP\_CTR: BWA553 is proceeding direct to SV, 130 miles north-west, FL330, and estimating SV at 1730Z, do you have any requests or restrictions?

TVSA\_APP: Copy, BWA553, direct to MIXUV and descend to FL060 approved.

TTZP\_CTR: Okay, direct MIXUV and FL060.

TVSA\_APP: Correct.

### **5-2 ADJACENT FIRs**

Aircraft exiting Piarco FIR to enter other adjacent FIRs shall coordinate as follows:

For handoffs to ATS facilities where radar surveillance is provided, coordinate information relevant to the aircraft's flight plan via text chat or VATCAR discord voice channels. Use the 'transfer' or 'point-out' function on your ATC client before verbally handing off the aircraft to the adjacent area control center.

For handoffs to oceanic and procedural control facilities provide distance, ETA to cross the FIR boundary/fix, speed & flight level.

Example:

TTZP\_CTR: San Juan center, Piarco radar.

SJU\_CTR: Piarco, San Juan center, go ahead.

TTZP\_CTR: AAL1089 estimates ILURI at1935Z, currently 20 miles to the east at FL360.

SJU\_CTR: Roger, radar contact.